版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江西省吉安市四校聯(lián)考2024年高一下數(shù)學期末聯(lián)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.過點作拋物線的兩條切線,切點為,則的面積為()A. B. C. D.2.為奇函數(shù),當時,則時,A. B.C. D.3.把函數(shù)的圖像上所有的點向左平行移動個單位長度,再把所得圖像上所有點的橫坐標縮短到原來的(縱坐標不變),得到的圖像所表示的函數(shù)是()A. B.C. D.4.在正項等比數(shù)列中,,則()A. B. C. D.5.不等式>0的解集是()A.(-,0)(1,+) B.(-,0)C.(1,+) D.(0,1)6.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.227.高一某班男生36人,女生24人,現(xiàn)用分層抽樣的方法抽取一個容量為的樣本,若抽出的女生為12人,則的值為()A.18 B.20 C.30 D.368.已知數(shù)列的前項和滿足.若對任意正整數(shù)都有恒成立,則實數(shù)的取值范圍為()A. B. C. D.9.平面過正方體ABCD—A1B1C1D1的頂點A,,,,則m,n所成角的正弦值為A. B. C. D.10..設(shè)、是關(guān)于x的方程的兩個不相等的實數(shù)根,那么過兩點,的直線與圓的位置關(guān)系是()A.相離. B.相切. C.相交. D.隨m的變化而變化.二、填空題:本大題共6小題,每小題5分,共30分。11.有下列四個說法:①已知向量,,若與的夾角為鈍角,則;②先將函數(shù)的圖象上各點縱坐標不變,橫坐標縮小為原來的后,再將所得函數(shù)圖象整體向左平移個單位,可得函數(shù)的圖象;③函數(shù)有三個零點;④函數(shù)在上單調(diào)遞減,在上單調(diào)遞增.其中正確的是__________.(填上所有正確說法的序號)12.設(shè),向量,,若,則__________.13.(如下圖)在正方形中,為邊中點,若,則__________.14.已知l,m是平面外的兩條不同直線.給出下列三個論斷:①l⊥m;②m∥;③l⊥.以其中的兩個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:__________.15.函數(shù)的最小正周期___________.16.古希臘數(shù)學家阿波羅尼斯在他的巨著《圓錐曲線論》中有一個著名的幾何問題:在平面上給定兩點,,動點滿足(其中和是正常數(shù),且),則的軌跡是一個圓,這個圓稱之為“阿波羅尼斯圓”,該圓的半徑為__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖是函數(shù)的部分圖象.(1)求函數(shù)的表達式;(2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;(3)把函數(shù)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.18.數(shù)列中,,.前項和滿足.(1)求(用表示);(2)求證:數(shù)列是等比數(shù)列;(3)若,現(xiàn)按如下方法構(gòu)造項數(shù)為的有窮數(shù)列,當時,;當時,.記數(shù)列的前項和,試問:是否能取整數(shù)?若能,請求出的取值集合:若不能,請說明理由.19.如圖,在平面直角坐標系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標分別為(1)求的值;(2)求的值.20.已知四棱臺中,平面ABCD,四邊形ABCD為平行四邊形,,,,,E為DC中點.(1)求證:平面;(2)求證:;(3)求三棱錐的高.(注:棱臺的兩底面相似)21.某校從高一年級的一次月考成績中隨機抽取了50名學生的成績(滿分100分,且抽取的學生成績都在內(nèi)),按成績分為,,,,五組,得到如圖所示的頻率分布直方圖.(1)用分層抽樣的方法從月考成績在內(nèi)的學生中抽取6人,求分別抽取月考成績在和內(nèi)的學生多少人;(2)在(1)的前提下,從這6名學生中隨機抽取2名學生進行調(diào)查,求月考成績在內(nèi)至少有1名學生被抽到的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】設(shè)拋物線過點的切線方程為,即,將點代入可得,同理都滿足方程,即為直線的方程為,與拋物線聯(lián)立,可得,點到直線的距離,則的面積為,故選B.【方法點晴】本題主要考查利用導(dǎo)數(shù)求曲線切線方程以及弦長公式與點到直線距離公式,屬于難題.求曲線切線方程的一般步驟是:(1)求出在處的導(dǎo)數(shù),即在點出的切線斜率(當曲線在處的切線與軸平行時,在處導(dǎo)數(shù)不存在,切線方程為);(2)由點斜式求得切線方程.2、C【解析】
利用奇函數(shù)的定義,結(jié)合反三角函數(shù),即可得出結(jié)論.【詳解】又,時,,故選:C.【點睛】本題考查奇函數(shù)的定義、反三角函數(shù),考查學生的計算能力,屬于中檔題.3、C【解析】
根據(jù)左右平移和周期變換原則變換即可得到結(jié)果.【詳解】向左平移個單位得:將橫坐標縮短為原來的得:本題正確選項:【點睛】本題考查三角函數(shù)的左右平移變換和周期變換的問題,屬于基礎(chǔ)題.4、D【解析】
結(jié)合對數(shù)的運算,得到,即可求解.【詳解】由題意,在正項等比數(shù)列中,,則.故選:D.【點睛】本題主要考查了等比數(shù)列的性質(zhì),以及對數(shù)的運算求值,其中解答中熟記等比數(shù)列的性質(zhì),合理應(yīng)用對數(shù)的運算求解是解答的關(guān)鍵,著重考查了推理與計算能力,屬于基礎(chǔ)題.5、A【解析】
由題意可得,,求解即可.【詳解】,解得或,故解集為(-,0)(1,+),故選A.【點睛】本題考查了分式不等式的解法,考查了計算能力,屬于基礎(chǔ)題.6、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學生的計算能力.7、C【解析】
根據(jù)分層抽樣等比例抽樣的特點,進行計算即可.【詳解】根據(jù)題意,可得,解得.故選:C.【點睛】本題考查分層抽樣的等比例抽取的性質(zhì),屬基礎(chǔ)題.8、C【解析】
先利用求出數(shù)列的通項公式,于是可求出,再利用參變量分離法得到,利用數(shù)列的單調(diào)性求出數(shù)列的最小項的值,可得出實數(shù)的取值范圍.【詳解】當時,,即,得;當時,由,得,兩式相減得,得,,所以,數(shù)列為等比數(shù)列,且首項為,公比為,.,由,得,所以,數(shù)列單調(diào)遞增,其最小項為,所以,,因此,實數(shù)的取值范圍是,故選C.【點睛】本題考查利用數(shù)列前項和求數(shù)列的通項,其關(guān)系式為,其次考查了數(shù)列不等式與參數(shù)的取值范圍問題,一般利用參變量分離法轉(zhuǎn)化為數(shù)列的最值問題來求解,考查化歸與轉(zhuǎn)化問題,屬于中等題.9、A【解析】
試題分析:如圖,設(shè)平面平面=,平面平面=,因為平面,所以,則所成的角等于所成的角.延長,過作,連接,則為,同理為,而,則所成的角即為所成的角,即為,故所成角的正弦值為,選A.【點睛】求解本題的關(guān)鍵是作出異面直線所成的角,求異面直線所成角的步驟是:平移定角、連線成形、解形求角、得鈍求補.10、D【解析】直線AB的方程為.即,所以直線AB的方程為,因為,所以,所以,所以直線AB與圓可能相交,也可能相切,也可能相離.二、填空題:本大題共6小題,每小題5分,共30分。11、②③④【解析】
根據(jù)向量,函數(shù)零點,函數(shù)的導(dǎo)數(shù),以及三角函數(shù)有關(guān)知識,對各個命題逐個判斷即可.【詳解】對①,若與的夾角為鈍角,則且與不共線,即,解得且,所以①錯誤;對②,先將函數(shù)的圖象上各點縱坐標不變,橫坐標縮小為原來的后,得函數(shù)的圖象,再將圖象整體向左平移個單位,可得函數(shù)的圖象,②正確;對③,函數(shù)的零點個數(shù),即解的個數(shù),亦即函數(shù)與的圖象的交點個數(shù),作出兩函數(shù)的圖象,如圖所示:由圖可知,③正確;對④,,當時,,當時,,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,④正確.故答案為:②③④.【點睛】本題主要考查命題的真假判斷,涉及向量數(shù)量積,三角函數(shù)圖像變換,函數(shù)零點個數(shù)的求法,以及函數(shù)單調(diào)性的判斷等知識的應(yīng)用,屬于中檔題.12、【解析】從題設(shè)可得,即,應(yīng)填答案.13、【解析】∵,根據(jù)向量加法的三角形法則,得到∴λ=1,.則λ+μ=.故答案為.點睛:此題考查的是向量的基本定理及其分解,由條件知道,題目中要用和,來表示未知向量,故題目中要通過正方形的邊長和它特殊的直角,來做基底,表示出要求的向量,根據(jù)平面向量基本定理,系數(shù)具有惟一性,得到結(jié)果.14、如果l⊥α,m∥α,則l⊥m或如果l⊥α,l⊥m,則m∥α.【解析】
將所給論斷,分別作為條件、結(jié)論加以分析.【詳解】將所給論斷,分別作為條件、結(jié)論,得到如下三個命題:(1)如果l⊥α,m∥α,則l⊥m.正確;(2)如果l⊥α,l⊥m,則m∥α.正確;(3)如果l⊥m,m∥α,則l⊥α.不正確,有可能l與α斜交、l∥α.【點睛】本題主要考查空間線面的位置關(guān)系、命題、邏輯推理能力及空間想象能力.15、【解析】
利用兩角和的正弦公式化簡函數(shù)表達式,由此求得函數(shù)的最小正周期.【詳解】依題意,故函數(shù)的周期.故填:.【點睛】本小題主要考查兩角和的正弦公式,考查三角函數(shù)最小正周期的求法,屬于基礎(chǔ)題.16、【解析】
設(shè),由動點滿足(其中和是正常數(shù),且),可得,化簡整理可得.【詳解】設(shè),由動點滿足(其中和是正常數(shù),且),所以,化簡得,即,所以該圓半徑故該圓的半徑為.【點睛】本題考查圓方程的標準形式和兩點距離公式,難點主要在于計算.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)答案不唯一,具體見解析(3)【解析】
(1)根據(jù)圖像先確定A,再確定,代入一個特殊點再確定.(2)根據(jù)(1)的結(jié)果結(jié)合圖像即可解決.(3)根據(jù)(1)的結(jié)果以及三角函數(shù)的變換求出即可解決.【詳解】解:(Ⅰ)由圖可知:,即,又由圖可知:是五點作圖法中的第三點,,即.(Ⅱ)因為的周期為,在內(nèi)恰有個周期.⑴當時,方程在內(nèi)有個實根,設(shè)為,結(jié)合圖像知,故所有實數(shù)根之和為;⑵當時,方程在內(nèi)有個實根為,故所有實數(shù)根之和為;⑶當時,方程在內(nèi)有個實根,設(shè)為,結(jié)合圖像知,故所有實數(shù)根之和為;綜上:當時,方程所有實數(shù)根之和為;當時,方程所有實數(shù)根之和為;(Ⅲ),函數(shù)的圖象如圖所示:則當圖象伸長為原來的倍以上時符合題意,所以.【點睛】本題主要考查了正弦函數(shù)的變換,根據(jù)圖像確定函數(shù),方程與函數(shù).在解決方程問題時往往轉(zhuǎn)化成兩個函數(shù)圖像交點的問題解決.本題屬于中等題.18、(1)(2)證明見詳解.(3)能取整數(shù),此時的取值集合為.【解析】
(1)利用遞推關(guān)系式,令,通過,求出即可.(2)遞推關(guān)系式轉(zhuǎn)化為:,化簡推出數(shù)列是等比數(shù)列.(3)由,求出,求出,得到通項公式,然后求解的分母與分子,討論要使取整數(shù),需為整數(shù),推出的取值集合為時,取整數(shù)【詳解】解:(1)令,則,將,代入,有.解得:.(2)由得,化簡得,又,是等比數(shù)列.(3)由,,又是等比數(shù)列,,,①當時,依次為,.②當時,,,,要使取整數(shù),需為整數(shù),令,,,要么都為整數(shù),要么都不是整數(shù),又所以當且僅當為奇數(shù)時,為整數(shù),即的取值集合為時,取整數(shù).【點睛】本題主要考查利用遞推公式結(jié)合,為判斷等比數(shù)列,考查數(shù)列前項和的比的問題的轉(zhuǎn)化與化歸思想的綜合性解題能力.19、(1)(2)【解析】
試題分析:(1)根據(jù)題意,由三角函數(shù)的定義可得與的值,進而可得出與的值,從而可求與的值就,結(jié)合兩角和正切公式可得答案;(2)由兩角和的正切公式,可得出的值,再根據(jù)的取值范圍,可得出的取值范圍,進而可得出的值.由條件得cosα=,cosβ=.∵α,β為銳角,∴sinα==,sinβ==.因此tanα==7,tanβ==.(1)tan(α+β)===-3.(2)∵tan2β===,∴tan(α+2β)===-1.∵α,β為銳角,∴0<α+2β<,∴α+2β=20、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)連結(jié),可證四邊形為平行四邊形,故可證平面;(2)連結(jié)BD,在中運用余弦定理可得:,利用勾股定理和線面垂直的性質(zhì),可得平面,因此可證;(3)根據(jù)題意,不難求,再利用即可求三棱錐的高.【詳解】(1)證明:連結(jié),因為為四棱臺,所以,又因為四邊形ABCD為平行四邊形,,,所以,又,且,∴四邊形為平行四邊形,,又平面,平面,平面.(2)證明:連結(jié)BD,在中運用余弦定理可得:,∴由勾股定理逆定理得,即.又平面ABCD,,平面,所以.(3)在中,,,,所以,故.由(1)知,由(2)知,,所以.在中,由勾股定理得,在中,由,可得,設(shè)O為DB的中點,連結(jié),則,且,又,所以,由勾股定理得,在中,因為,,,所以,即,故,設(shè)所求棱錐的高為h,則,所以.【點睛】本題考查線面平行、線線垂直的證明,棱錐的高,考查了三棱錐體積計算公式,利用體積轉(zhuǎn)化法求高,屬于中等題.21、(1)有4人,有2人;(2)【解析】
(1)由頻率分布直方圖,求出成績在和內(nèi)的頻率的比值,再按比例抽取即可;(2)由古典概型的概率的求法,先求出從這6名學生中隨機抽取2名學生的所有不同取法,再求出被抽到的學生至少有1名月考成績在內(nèi)的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 懸挑腳手架施工方案要點
- 防水施工方案范本實例
- 數(shù)字體育發(fā)展施工方案
- led屏施工方案編制要點
- 圍擋施工方案及施工工藝流程方案
- 燈光亮化施工工藝方案
- 虹吸排水工程具體實施方案
- 綠色數(shù)據(jù)中心建設(shè)與算力能效優(yōu)化方案
- 2026河南南陽理工學院人才招聘30人考試備考題庫及答案解析
- 2026年第五師八十八團國家級公益林護林員招聘(3人)考試備考試題及答案解析
- 2026陜西省森林資源管理局局屬企業(yè)招聘(55人)備考題庫附答案
- 食品添加劑生產(chǎn)質(zhì)量管理手冊(標準版)
- 【初中 歷史】2025-2026學年統(tǒng)編版八年級歷史上冊期末材料分析題練習
- 2026年2026年健康飲食防失眠培訓(xùn)課件
- 廣西華盛集團廖平糖業(yè)有限責任公司招聘筆試題庫2026
- 廣東省深圳市福田區(qū)五校2024-2025學年九年級上學期期末(一模)化學試題(含答案)
- 承包商安全考核實施細則
- 《馬原》期末復(fù)習資料
- 北京市西城區(qū)2021屆英語八年級(上)期末考試模擬試題
- 電氣工程課程設(shè)計反激型開關(guān)電源設(shè)計
- 二、自然科學類科研積分的計算方法與標準
評論
0/150
提交評論