版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
貴港市重點中學2024屆高一下數學期末質量跟蹤監(jiān)視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓C與直線和直線都相切,且圓心C在直線上,則圓C的方程是()A. B.C. D.2.某班20名學生的期末考試成績用如圖莖葉圖表示,執(zhí)行如圖程序框圖,若輸入的()分別為這20名學生的考試成績,則輸出的結果為()A.11 B.10 C.9 D.83.對于復數,定義映射.若復數在映射作用下對應復數,則復數在復平面內對應的點位于()A.第四象限 B.第三象限 C.第二象限 D.第一象限4.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.45.若經過兩點、的直線的傾斜角為,則等于()A. B. C. D.6.函數的定義域為()A. B. C. D.7.已知,則()A. B. C. D.8.若將函數的圖象向左平移個單位長度,平移后的圖象關于點對稱,則函數在上的最小值是A. B. C. D.9.已知等比數列an的公比為q,且q<1,數列bn滿足bn=anA.-23 B.23 C.10.在△ABC中,,則A等于()A.30° B.60° C.120° D.150°二、填空題:本大題共6小題,每小題5分,共30分。11.某單位有200名職工,現要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1-200編號,并按編號順序平均分為40組(1-5號,6-10號…,196-200號).若第5組抽出的號碼為22,則第8組抽出的號碼應是12.已知數列,,若該數列是減數列,則實數的取值范圍是__________.13.如圖,已知六棱錐的底面是正六邊形,平面,,給出下列結論:①;②直線平面;③平面平面;④異面直線與所成角為;⑤直線與平面所成角的余弦值為.其中正確的有_______(把所有正確的序號都填上)14.在正四面體中,棱與所成角大小為________.15.如圖,二面角等于,、是棱上兩點,、分別在半平面、內,,,且,則的長等于______.16.設無窮等比數列的公比為,若,則__________________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.向量函數.(1)求的最小正周期及單調增區(qū)間;(2)求在區(qū)間上的最大值和最小值及取最值時的值.18.(2012年蘇州17)如圖,在中,已知為線段上的一點,且.(1)若,求的值;(2)若,且,求的最大值.19.已知數列滿足:.(1)證明數列是等比數列,并求數列的通項;(2)求數列的前項和.20.在平面直角坐標系中,已知A(-1,0),B(2,0),動點M(x,y)滿足MAMB=12,設動點(1)求動點M的軌跡方程,并說明曲線C是什么圖形;(2)過點1,2的直線l與曲線C交于E,F兩點,若|EF|=455(3)設P是直線x+y+8=0上的點,過P點作曲線C的切線PG,PH,切點為G,H,設C'(-2,0),求證:過21.在中,內角,,所對的邊分別為,,且.(1)求角的大小;(2)若,,求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
設出圓的方程,利用圓心到直線的距離列出方程求解即可【詳解】∵圓心在直線上,∴可設圓心為,設所求圓的方程為,則由題意,解得∴所求圓的方程為.選B【點睛】直線與圓的問題絕大多數都是轉化為圓心到直線的距離公式進行求解2、A【解析】
首先判斷程序框圖的功能,然后從莖葉圖數出相應人數,從而得到答案.【詳解】由算法流程圖可知,其統(tǒng)計的是成績大于等于120的人數,所以由莖葉圖知:成績大于等于120的人數為11,故選A.【點睛】本題主要考查算法框圖的輸出結果,意在考查學生的分析能力及計算能力,難度不大.3、A【解析】,對應點,在第四象限.4、B【解析】
由題得在底面的投影為的外心,故為的中點,再利用數量積計算得解.【詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【點睛】本題主要考查平面向量的運算,意在考查學生對該知識的理解掌握水平,屬于基礎題.5、D【解析】
由直線的傾斜角得知直線的斜率為,再利用斜率公式可求出的值.【詳解】由于直線的傾斜角為,則該直線的斜率為,由斜率公式得,解得,故選D.【點睛】本題考查利用斜率公式求參數,同時也涉及了直線的傾斜角與斜率之間的關系,考查計算能力,屬于基礎題.6、C【解析】要使函數有意義,需使,即,所以故選C7、C【解析】
根據特殊值排除A,B選項,根據單調性選出C,D選項中的正確選項.【詳解】當時,,故A,B兩個選項錯誤.由于,故,所以C選項正確,D選項錯誤.故本小題選C.【點睛】本小題主要考查三角函數值,考查對數函數和指數函數的單調性,屬于基礎題.8、C【解析】
由題意得,故得平移后的解析式為,根據所的圖象關于點對稱可求得,從而可得,進而可得所求最小值.【詳解】由題意得,將函數的圖象向左平移個單位長度所得圖象對應的解析式為,因為平移后的圖象關于點對稱,所以,故,又,所以.所以,由得,所以當或,即或時,函數取得最小值,且最小值為.故選C.【點睛】本題考查三角函數的性質的綜合應用,解題的關鍵是求出參數的值,容易出現的錯誤是函數圖象平移時弄錯平移的方向和平移量,此時需要注意在水平方向上的平移或伸縮只是對變量而言的.9、A【解析】
由題可知數列{an}【詳解】因為數列{bn}有連續(xù)四項在集合{-28,-19,-13,7,17,23}中,bn=an-1,所以數列{an}有連續(xù)四項在集合{-27,-18,-12,8,18,24}中,所以數列{an}的連續(xù)四項不同號,即【點睛】本題主要考查等比數列的綜合應用,意在考查學生的分析能力,邏輯推理能力,分類討論能力,難度較大.10、C【解析】
試題分析:考點:余弦定理解三角形二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】試題分析:因為將全體職工隨機按1~200編號,并按編號順序平均分為40組,由分組可知,抽號的間隔為5,因為第5組抽出的號碼為22,所以第6組抽出的號碼為27,第7組抽出的號碼為32,第8組抽出的號碼為1.考點:系統(tǒng)抽樣.點評:本題考查系統(tǒng)抽樣,在系統(tǒng)抽樣過程中得到的樣本號碼是最規(guī)則的一組編號.12、【解析】
本題可以先通過得出的解析式,再得出的解析式,最后通過數列是遞減數列得出實數的取值范圍.【詳解】,因為該數列是遞減數列,所以即因為所以實數的取值范圍是.【點睛】本題考察的是遞減數列的性質,遞減數列的后一項減去前一項的值一定是一個負值.13、①③④⑤【解析】
設出幾何體的邊長,根據正六邊形的性質,線面垂直的判定定理,線面平行的判定定理,面面垂直的判定定理,異面直線所成角,線面角有關知識,對五個結論逐一分析,由此得出正確結論的序號.【詳解】設正六邊形長為,則.根據正六邊形的幾何性質可知,由平面得,所以平面,所以,故①正確.由于,而,所以直線平面不正確,故②錯誤.易證得,所以平面,所以平面平面,故③正確.由于,所以是異面直線與所成角,在中,,故,也即異面直線與所成角為,故④正確.連接,則,由①證明過程可知平面,所以平面,所以是所求線面角,在三角形中,,由余弦定理得,故⑤正確.綜上所述,正確的序號為①③④⑤.【點睛】本小題主要考查線面垂直的判定,面面垂直的判定,考查線線角、線面角的求法,屬于中檔題.14、【解析】
根據正四面體的結構特征,取中點,連,,利用線面垂直的判定證得平面,進而得到,即可得到答案.【詳解】如圖所示,取中點,連,,正四面體是四個全等正三角形圍成的空間封閉圖形,所有棱長都相等,所以,,且,所以平面,又由平面,所以,所以棱與所成角為.【點睛】本題主要考查了異面直線所成角的求解,以及直線與平面垂直的判定及應用,著重考查了推理與論證能力,屬于基礎題.15、1【解析】
由已知中二面角α﹣l﹣β等于110°,A、B是棱l上兩點,AC、BD分別在半平面α、β內,AC⊥l,BD⊥l,且AB=AC=BD=1,由,結合向量數量積的運算,即可求出CD的長.【詳解】∵A、B是棱l上兩點,AC、BD分別在半平面α、β內,AC⊥l,BD⊥l,又∵二面角α﹣l﹣β的平面角θ等于110°,且AB=AC=BD=1,∴,60°,∴故答案為1.【點睛】本題考查的知識點是與二面角有關的立體幾何綜合題,其中利用,結合向量數量積的運算,是解答本題的關鍵.16、【解析】
由可知,算出用表示的極限,再利用性質計算得出即可.【詳解】顯然公比不為1,所以公比為的等比數列求和公式,且,故.此時當時,求和極限為,所以,故,所以,故,又,故.故答案為:.【點睛】本題主要考查等比數列求和公式,當時.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),(2),最大值為;,最小值為0【解析】
(1)用已知的向量表示出,再進行化簡整理,可得;(2)由正弦函數的值域可得。【詳解】(1)由題得,,化簡整理得,因此的最小正周期為,由得,則單調增區(qū)間為.(2)若,則,當,即時,取最大值,當,即時,取最小值0.綜上,當時,取最大值,當時,取最小值0.【點睛】本題考查向量的運算和函數的周期,單調區(qū)間以及最值,知識點考查全面,難度不大。18、(1);(2).【解析】試題分析:(1)利用平面向量基本定理可得.(2)利用題意可得,則的最大值為.試題解析:(1),而,∴.(2)∴當時,的最大值為.19、(1)見證明;(2)【解析】
(1)由變形得,即,從而可證得結論成立,進而可求出通項公式;(2)由(1)及條件可求出,然后根據分組求和法可得.【詳解】(1)證明:因為,所以.因為所以所以.又,所以是首項為,公比為2的等比數列,所以.(2)解:由(1)可得,所以.【點睛】證明數列為等比數列時,在得到后,不要忘了說明數列中沒有零項這一步驟.另外,對于數列的求和問題,解題時要根據通項公式的特點選擇合適的方法進行求解,屬于基礎題.20、(1)動點M的軌跡方程為(x+2)2+y2=4,曲線C是以(-2,0)為圓心,2為半徑的圓(2)l的方程為2x-y=0或【解析】
(1)利用兩點間的距離公式并結合條件MAMB=12,化簡得出曲線C的方程,根據曲線(2)根據幾何法計算出圓心到直線的距離d=455,對直線l分兩種情況討論,一是斜率不存在,一是斜率存在,結合圓心到直線的距離d=(3)設點P的坐標為m,-m-8,根據切線的性質得出PG⊥GC',從而可得出過G、P、C'x2【詳解】(1)由題意得(x+1)2+y所以動點M的軌跡方程為(x+2)2曲線C是以(-2,0)為圓心,2為半徑的圓;(2)①當直線l斜率不存在時,x=1,不成立;②當直線l的斜率存在時,設l:y-2=k(x-1),即kx-y+2-k=0,圓心C(-2,0)到l的距離為d=-3k+21+∴d2=165=(2-3k)2∴l(xiāng)的方程為2x-y=0或2x-29y+56=0;(3)證明:∵P在直線x+y+8=0上,則設P(m,-m-8)∵C'為曲線C的圓心,由圓的切線的性質可得PG⊥GC',∴經過G,P,C'的三點的圓是以PC'為直徑的圓,則方程為(x+2)(x-m)+y(y+m+8)=0,整理可得x2令x2+y解得x=-2y=0或則有經過G,P,C'三點的圓必過定點,所有定點的坐標為(-2,0),(-5,-3).【點睛】本題考查動點軌跡方程的求法,考查直線截圓所得弦長的計算以及動圓所過定點的問題,解決圓所過定點問題,關鍵是要將圓的方程求出來,對帶參數的部分提公因式,轉化為方程組求公共解問題.21、(1)(2)【解析】
(1)由正弦定理以及兩角差的余弦公式得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鞋類設計師操作規(guī)范知識考核試卷含答案
- 自來水筆制造工安全培訓效果模擬考核試卷含答案
- 巷道掘砌工崗前決策判斷考核試卷含答案
- 自然水域救生員崗前工作標準化考核試卷含答案
- 煉焦工安全宣貫模擬考核試卷含答案
- 玻璃及玻璃制品成型工創(chuàng)新意識競賽考核試卷含答案
- 2024年鄭州升達經貿管理學院輔導員考試參考題庫附答案
- 氧化擴散工安全宣貫評優(yōu)考核試卷含答案
- 2025呼和浩特托克托縣招聘社區(qū)工作者及儲備人員筆試通知備考題庫附答案
- 燒結球團原料工崗前基礎實戰(zhàn)考核試卷含答案
- 2026年重慶市江津區(qū)社區(qū)專職人員招聘(642人)筆試備考試題及答案解析
- 2026年思明區(qū)公開招聘社區(qū)工作者考試備考題庫及完整答案詳解1套
- 【四年級】【數學】【秋季上】期末家長會:數海引航愛伴成長【課件】
- 小學音樂教師年度述職報告范本
- 設備設施風險分級管控清單
- 河南交通職業(yè)技術學院教師招聘考試歷年真題
- 污水管網工程監(jiān)理規(guī)劃修改
- (機構動態(tài)仿真設計)adams
- 北京市社保信息化發(fā)展評估研究報告
- GB/T 8336-2011氣瓶專用螺紋量規(guī)
- GB/T 1048-2019管道元件公稱壓力的定義和選用
評論
0/150
提交評論