高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)_第1頁
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)_第2頁
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)_第3頁
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)_第4頁
高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余2頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

高三數(shù)學(xué)知識點(diǎn)總結(jié)歸納(精彩3篇)高三數(shù)學(xué)知識點(diǎn)總結(jié)篇一1、直線的傾斜角定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α2、直線的斜率①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。②過兩點(diǎn)的直線的斜率公式:注意下面四點(diǎn):(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90°;(2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。3、直線方程點(diǎn)斜式:直線斜率k,且過點(diǎn)注意:當(dāng)直線的斜率為0°時(shí),k=0,直線的方程是y=y1。當(dāng)直線的斜率為90°時(shí),直線的斜率不存在,它的方程不能用點(diǎn)斜式表示、但因l上每一點(diǎn)的橫坐標(biāo)都等于x1,所以它的方程是x=x1。最新高三高考數(shù)學(xué)必背知識點(diǎn)總結(jié)模板篇二一、充分條件和必要條件當(dāng)命題“若A則B”為真時(shí),A稱為B的充分條件,B稱為A的必要條件。二、充分條件、必要條件的常用判斷法1.定義法:判斷B是A的條件,實(shí)際上就是判斷B=>A或者A=>B是否成立,只要把題目中所給的條件按邏輯關(guān)系畫出箭頭示意圖,再利用定義判斷即可2.轉(zhuǎn)換法:當(dāng)所給命題的充要條件不易判斷時(shí),可對命題進(jìn)行等價(jià)裝換,例如改用其逆否命題進(jìn)行判斷。3.集合法在命題的條件()和結(jié)論間的關(guān)系判斷有困難時(shí),可從集合的角度考慮,記條件p、q對應(yīng)的集合分別為A、B,則:若A?B,則p是q的充分條件。若A?B,則p是q的必要條件。若A=B,則p是q的充要條件。若A?B,且B?A,則p是q的既不充分也不必要條件。三、知識擴(kuò)展1.四種命題反映出命題之間的內(nèi)在聯(lián)系,要注意結(jié)合實(shí)際問題,理解其關(guān)系(尤其是兩種等價(jià)關(guān)系)的產(chǎn)生過程,關(guān)于逆命題、否命題與逆否命題,也可以敘述為:(1)交換命題的條件和結(jié)論,所得的新命題就是原來命題的逆命題;(2)同時(shí)否定命題的條件和結(jié)論,所得的新命題就是原來的否命題;(3)交換命題的條件和結(jié)論,并且同時(shí)否定,所得的新命題就是原命題的逆否命題。2.由于“充分條件與必要條件”是四種命題的關(guān)系的深化,他們之間存在這密切的聯(lián)系,故在判斷命題的條件的充要性時(shí),可考慮“正難則反”的原則,即在正面判斷較難時(shí),可轉(zhuǎn)化為應(yīng)用該命題的逆否命題進(jìn)行判斷。一個(gè)結(jié)論成立的充分條件可以不止一個(gè),必要條件也可以不止一個(gè)。高三數(shù)學(xué)知識點(diǎn)總結(jié)篇三等式的性質(zhì):①不等式的性質(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。不等式基本性質(zhì)有:(1)a>bb(2)a>b,b>ca>c(傳遞性)(3)a>ba+c>b+c(c∈R)(4)c>0時(shí),a>bac>bccbac運(yùn)算性質(zhì)有:(1)a>b,c>da+c>b+d。(2)a>b>0,c>d>0ac>bd。(3)a>b>0an>bn(n∈N,n>1)。(4)a>b>0>(n∈N,n>1)。應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:“”和“”即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。②關(guān)于不等式的性質(zhì)的考察,主要有以下三類問題:(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。(2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。(3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。高中數(shù)學(xué)集合復(fù)習(xí)知識點(diǎn)任一A,B,記做ABAB,BA,A=BAB={|A|,且|B|}AB={|A|,或|B|}Card(AB)=card(A)+card(B)-card(AB)(1)命題原命題若p則q逆命題若q則p否命題若p則q逆否命題若q,則p(2)AB,A是B成立的充分條件BA,A是B成立的必要條件AB,A是B成立的充要條件1、集合元素具有①確定性;②互異性;③無序性2、集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法(3)集合的運(yùn)算①A∩(B∪C)=(A∩B)∪(A∩C)②Cu(A∩B)=CuA∪CuBCu(A∪B)=CuA∩CuB(4)集合的性質(zhì)n元集合的字集數(shù):2n真子集數(shù):2n-1;非空真子集數(shù):2n-2高中數(shù)學(xué)集合知識點(diǎn)歸納1、集合的概念集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說明:某些制定的'且不同的對象集合在一起就稱為一個(gè)集合。組成集合的對象叫元素,集合通常用大寫字母A、B、C、…來表示。元素常用小寫字母a、b、c、…來表示。集合是一個(gè)確定的整體,因此對集合也可以這樣描述:具有某種屬性的對象的全體組成的一個(gè)集合。2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。3、集合中元素的特性(1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。(2)互異性:“集合張的元素必須是互異的”,就是說“對于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。(3)無序性:集合與其中元素的排列次序無關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。4、集合的分類集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。無限集:含有無限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無限集。特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。5、特定的集合的表示為了書寫方便,我們規(guī)定常見的數(shù)集用特定的字母表示,下面是幾種常見的數(shù)集表示方法,請牢記。(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論