山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第1頁
山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第2頁
山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第3頁
山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第4頁
山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

山東省金鄉(xiāng)市達(dá)標(biāo)名校2021-2022學(xué)年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖1,點F從菱形ABCD的頂點A出發(fā),沿A→D→B以1cm/s的速度勻速運動到點B,圖2是點F運動時,△FBC的面積y(cm2)隨時間x(s)變化的關(guān)系圖象,則a的值為()A. B.2 C. D.22.關(guān)于的敘述正確的是()A.= B.在數(shù)軸上不存在表示的點C.=± D.與最接近的整數(shù)是33.若一次函數(shù)的圖象經(jīng)過第一、二、四象限,則下列不等式一定成立的是()A. B. C. D.4.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.5.點A(a,3)與點B(4,b)關(guān)于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.720176.如圖,AB切⊙O于點B,OA=2,AB=3,弦BC∥OA,則劣弧BC的弧長為()A. B. C.π D.7.如圖,一個幾何體由5個大小相同、棱長為1的正方體搭成,則這個幾何體的左視圖的面積為()A.5 B.4 C.3 D.28.在同一直角坐標(biāo)系中,函數(shù)y=kx-k與(k≠0)的圖象大致是()A. B.C. D.9.(2016四川省甘孜州)如圖,在5×5的正方形網(wǎng)格中,每個小正方形的邊長都為1,若將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,則A點運動的路徑的長為()A.π B.2π C.4π D.8π10.“a是實數(shù),”這一事件是()A.不可能事件 B.不確定事件 C.隨機事件 D.必然事件二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,菱形OABC的頂點O是原點,頂點B在y軸上,菱形的兩條對角線的長分別是6和4,反比例函數(shù)的圖象經(jīng)過點C,則k的值為.12.如圖,邊長為4的正方形ABCD內(nèi)接于⊙O,點E是弧AB上的一動點(不與點A、B重合),點F是弧BC上的一點,連接OE,OF,分別與交AB,BC于點G,H,且∠EOF=90°,連接GH,有下列結(jié)論:①弧AE=弧BF;②△OGH是等腰直角三角形;③四邊形OGBH的面積隨著點E位置的變化而變化;④△GBH周長的最小值為4+2.其中正確的是_____.(把你認(rèn)為正確結(jié)論的序號都填上)13.如圖所示,點C在反比例函數(shù)的圖象上,過點C的直線與x軸、y軸分別交于點A、B,且,已知的面積為1,則k的值為______.14.如圖,邊長為6的菱形ABCD中,AC是其對角線,∠B=60°,點P在CD上,CP=2,點M在AD上,點N在AC上,則△PMN的周長的最小值為_____________.15.分解因式:_________.16.如圖是一個立體圖形的三種視圖,則這個立體圖形的體積(結(jié)果保留π)為______________.三、解答題(共8題,共72分)17.(8分)如圖,在Rt△ABC中,∠C=90°,∠A=30°,AB=8,點P從點A出發(fā),沿折線AB﹣BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動,點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動,兩點同時出發(fā),當(dāng)點P停止時,點Q也隨之停止.設(shè)點P運動的時間為t秒.(1)求線段AQ的長;(用含t的代數(shù)式表示)(2)當(dāng)點P在AB邊上運動時,求PQ與△ABC的一邊垂直時t的值;(3)設(shè)△APQ的面積為S,求S與t的函數(shù)關(guān)系式;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.18.(8分)如圖,平面直角坐標(biāo)系中,將含30°的三角尺的直角頂點C落在第二象限.其斜邊兩端點A、B分別落在x軸、y軸上且AB=12cm(1)若OB=6cm.①求點C的坐標(biāo);②若點A向右滑動的距離與點B向上滑動的距離相等,求滑動的距離;(2)點C與點O的距離的最大值是多少cm.19.(8分)如圖,△ABC中,點D在邊AB上,滿足∠ACD=∠ABC,若AC=,AD=1,求DB的長.20.(8分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達(dá)C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)21.(8分)如圖,在△ABC中,∠B=∠C=40°,點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,到達(dá)C點、B點后運動停止.求證:△ABE≌△ACD;若AB=BE,求∠DAE的度數(shù);拓展:若△ABD的外心在其內(nèi)部時,求∠BDA的取值范圍.22.(10分)(1)如圖,四邊形為正方形,,那么與相等嗎?為什么?(2)如圖,在中,,,為邊的中點,于點,交于,求的值(3)如圖,中,,為邊的中點,于點,交于,若,,求.23.(12分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標(biāo);(2)連接BD,F(xiàn)為拋物線上一動點,當(dāng)∠FAB=∠EDB時,求點F的坐標(biāo);(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當(dāng)點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數(shù);②求證:P點為△ABC的費馬點.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

通過分析圖象,點F從點A到D用as,此時,△FBC的面積為a,依此可求菱形的高DE,再由圖象可知,BD=,應(yīng)用兩次勾股定理分別求BE和a.【詳解】過點D作DE⊥BC于點E.由圖象可知,點F由點A到點D用時為as,△FBC的面積為acm1..∴AD=a.∴DE?AD=a.∴DE=1.當(dāng)點F從D到B時,用s.∴BD=.Rt△DBE中,BE=,∵四邊形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a1=11+(a-1)1.解得a=.故選C.【點睛】本題綜合考查了菱形性質(zhì)和一次函數(shù)圖象性質(zhì),解答過程中要注意函數(shù)圖象變化與動點位置之間的關(guān)系.2、D【解析】

根據(jù)二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算對各項依次分析,即可解答.【詳解】選項A,+無法計算;選項B,在數(shù)軸上存在表示的點;選項C,;選項D,與最接近的整數(shù)是=1.故選D.【點睛】本題考查了二次根式的加法法則、實數(shù)與數(shù)軸上的點是一一對應(yīng)的關(guān)系、二次根式的化簡及無理數(shù)的估算等知識點,熟記這些知識點是解題的關(guān)鍵.3、D【解析】∵一次函數(shù)y=ax+b的圖象經(jīng)過第一、二、四象限,∴a<0,b>0,∴a+b不一定大于0,故A錯誤,a?b<0,故B錯誤,ab<0,故C錯誤,<0,故D正確.故選D.4、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.5、B【解析】

根據(jù)關(guān)于y軸對稱的點的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù),可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點睛】本題考查了關(guān)于y軸對稱的點的坐標(biāo),利用關(guān)于y軸對稱的點的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)得出a,b是解題關(guān)鍵.6、A【解析】試題分析:連接OB,OC,∵AB為圓O的切線,∴∠ABO=90°,在Rt△ABO中,OA=,∠A=30°,∴OB=,∠AOB=60°,∵BC∥OA,∴∠OBC=∠AOB=60°,又OB=OC,∴△BOC為等邊三角形,∴∠BOC=60°,則劣弧長為.故選A.考點:1.切線的性質(zhì);2.含30度角的直角三角形;3.弧長的計算.7、C【解析】

根據(jù)左視圖是從左面看到的圖形求解即可.【詳解】從左面看,可以看到3個正方形,面積為3,故選:C.【點睛】本題考查三視圖的知識,解決此類圖的關(guān)鍵是由三視圖得到相應(yīng)的平面圖形.從正面看到的圖是正視圖,從上面看到的圖形是俯視圖,從左面看到的圖形是左視圖.8、D【解析】

根據(jù)k值的正負(fù)性分別判斷一次函數(shù)y=kx-k與反比例函數(shù)(k≠0)所經(jīng)過象限,即可得出答案.【詳解】解:有兩種情況,當(dāng)k>0是時,一次函數(shù)y=kx-k的圖象經(jīng)過一、三、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過一、三象限;當(dāng)k<0時,一次函數(shù)y=kx-k的圖象經(jīng)過一、二、四象限,反比例函數(shù)(k≠0)的圖象經(jīng)過二、四象限;根據(jù)選項可知,D選項滿足條件.故選D.【點睛】本題考查了一次函數(shù)、反比例函數(shù)的圖象.正確這兩種圖象所經(jīng)過的象限是解題的關(guān)鍵.9、B【解析】試題分析:∵每個小正方形的邊長都為1,∴OA=4,∵將△AOB繞點O順時針旋轉(zhuǎn)90°得到△A′OB′,∴∠AOA′=90°,∴A點運動的路徑的長為:=2π.故選B.考點:弧長的計算;旋轉(zhuǎn)的性質(zhì).10、D【解析】是實數(shù),||一定大于等于0,是必然事件,故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、-6【解析】

分析:∵菱形的兩條對角線的長分別是6和4,∴A(﹣3,2).∵點A在反比例函數(shù)的圖象上,∴,解得k=-6.【詳解】請在此輸入詳解!12、①②④【解析】

①根據(jù)ASA可證△BOE≌△COF,根據(jù)全等三角形的性質(zhì)得到BE=CF,根據(jù)等弦對等弧得到,可以判斷①;

②根據(jù)SAS可證△BOG≌△COH,根據(jù)全等三角形的性質(zhì)得到∠GOH=90°,OG=OH,根據(jù)等腰直角三角形的判定得到△OGH是等腰直角三角形,可以判斷②;

③通過證明△HOM≌△GON,可得四邊形OGBH的面積始終等于正方形ONBM的面積,可以判斷③;

④根據(jù)△BOG≌△COH可知BG=CH,則BG+BH=BC=4,設(shè)BG=x,則BH=4-x,根據(jù)勾股定理得到GH==,可以求得其最小值,可以判斷④.【詳解】解:①如圖所示,

∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°,

∴∠BOE=∠COF,

在△BOE與△COF中,,

∴△BOE≌△COF,

∴BE=CF,

∴,①正確;

②∵OC=OB,∠COH=∠BOG,∠OCH=∠OBG=45°,

∴△BOG≌△COH;

∴OG=OH,∵∠GOH=90°,

∴△OGH是等腰直角三角形,②正確.③如圖所示,

∵△HOM≌△GON,

∴四邊形OGBH的面積始終等于正方形ONBM的面積,③錯誤;

④∵△BOG≌△COH,

∴BG=CH,

∴BG+BH=BC=4,

設(shè)BG=x,則BH=4-x,

則GH==,

∴其最小值為4+2,④正確.

故答案為:①②④【點睛】考查了圓的綜合題,關(guān)鍵是熟練掌握全等三角形的判定和性質(zhì),等弦對等弧,等腰直角三角形的判定,勾股定理,面積的計算,綜合性較強.13、1【解析】

根據(jù)題意可以設(shè)出點A的坐標(biāo),從而以得到點C和點B的坐標(biāo),再根據(jù)的面積為1,即可求得k的值.【詳解】解:設(shè)點A的坐標(biāo)為,過點C的直線與x軸,y軸分別交于點A,B,且,的面積為1,點,點B的坐標(biāo)為,,解得,,故答案為:1.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義、一次函數(shù)圖象上點的坐標(biāo)特征、反比例函數(shù)圖象上點的坐標(biāo)特征,解題關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.14、2【解析】

過P作關(guān)于AC和AD的對稱點,連接和,過P作,和,M,N共線時最短,根據(jù)對稱性得知△PMN的周長的最小值為.因為四邊形ABCD是菱形,AD是對角線,可以求得,根據(jù)特殊三角形函數(shù)值求得,,再根據(jù)線段相加勾股定理即可求解.【詳解】過P作關(guān)于AC和AD的對稱點,連接和,過P作,四邊形ABCD是菱形,AD是對角線,,,,,又由題意得【點睛】本題主要考查對稱性質(zhì),菱形性質(zhì),內(nèi)角和定理和勾股定理,熟悉掌握定理是關(guān)鍵.15、【解析】先提取公因式b,再利用完全平方公式進行二次分解.解答:解:a1b-1ab+b,=b(a1-1a+1),…(提取公因式)=b(a-1)1.…(完全平方公式)16、250【解析】

從三視圖可以看正視圖以及左視圖為矩形,而俯視圖為圓形,故可以得出該立體圖形為圓柱.由三視圖可得圓柱的半徑和高,易求體積.【詳解】該立體圖形為圓柱,∵圓柱的底面半徑r=5,高h(yuǎn)=10,∴圓柱的體積V=πr2h=π×52×10=250π(立方單位).答:立體圖形的體積為250π立方單位.故答案為250π.【點睛】考查學(xué)生對三視圖掌握程度和靈活運用能力,同時也體現(xiàn)了對空間想象能力方面的考查;圓柱體積公式=底面積×高.三、解答題(共8題,共72分)17、(1)4﹣t;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)S與t的函數(shù)關(guān)系式為:S=;(4)t的值為或.【解析】分析:(1)根據(jù)勾股定理求出AC的長,然后由AQ=AC-CQ求解即可;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:當(dāng)Q在C處,P在A處時,PQ⊥BC;當(dāng)PQ⊥AB時;當(dāng)PQ⊥AC時;分別求解即可;(3)當(dāng)P在AB邊上時,即0≤t≤1,作PG⊥AC于G,或當(dāng)P在邊BC上時,即1<t≤3,分別根據(jù)三角形的面積求函數(shù)的解析式即可;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當(dāng)P在邊AB上時,作PG⊥AC于G,則AG=GQ,列方程求解;②當(dāng)P在邊AC上時,AQ=PQ,根據(jù)勾股定理求解.詳解:(1)如圖1,Rt△ABC中,∠A=30°,AB=8,∴BC=AB=4,∴AC=,由題意得:CQ=t,∴AQ=4﹣t;(2)當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直,有三種情況:①當(dāng)Q在C處,P在A處時,PQ⊥BC,此時t=0;②當(dāng)PQ⊥AB時,如圖2,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴,t=;③當(dāng)PQ⊥AC時,如圖3,∵AQ=4﹣t,AP=8t,∠A=30°,∴cos30°=,∴t=;綜上所述,當(dāng)點P在AB邊上運動時,PQ與△ABC的一邊垂直時t的值是t=0或或;(3)分兩種情況:①當(dāng)P在AB邊上時,即0≤t≤1,如圖4,作PG⊥AC于G,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴S△APQ=AQ?PG=(4﹣t)?4t=﹣2t2+8t;②當(dāng)P在邊BC上時,即1<t≤3,如圖5,由題意得:PB=2(t﹣1),∴PC=4﹣2(t﹣1)=﹣2t+6,∴S△APQ=AQ?PC=(4﹣t)(﹣2t+6)=t2;綜上所述,S與t的函數(shù)關(guān)系式為:S=;(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,有兩種情況:①當(dāng)P在邊AB上時,如圖6,AP=PQ,作PG⊥AC于G,則AG=GQ,∵∠A=30°,AP=8t,∠AGP=90°,∴PG=4t,∴AG=4t,由AQ=2AG得:4﹣t=8t,t=,②當(dāng)P在邊AC上時,如圖7,AQ=PQ,Rt△PCQ中,由勾股定理得:CQ2+CP2=PQ2,∴,t=或﹣(舍),綜上所述,t的值為或.點睛:此題主要考查了三角形中的動點問題,用到勾股定理,等腰三角形的性質(zhì),直角三角形的性質(zhì),二次函數(shù)等知識,是一道比較困難的綜合題,關(guān)鍵是合理添加輔助線,構(gòu)造合適的方程求解.18、(1)①點C的坐標(biāo)為(-3,9);②滑動的距離為6(﹣1)cm;(2)OC最大值1cm.【解析】試題分析:(1)①過點C作y軸的垂線,垂足為D,根據(jù)30°的直角三角形的性質(zhì)解答即可;②設(shè)點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,根據(jù)銳角三角函數(shù)和勾股定理解答即可;(2)設(shè)點C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,證得△ACE∽△BCD,利用相似三角形的性質(zhì)解答即可.試題解析:解:(1)①過點C作y軸的垂線,垂足為D,如圖1:在Rt△AOB中,AB=1,OB=6,則BC=6,∴∠BAO=30°,∠ABO=60°,又∵∠CBA=60°,∴∠CBD=60°,∠BCD=30°,∴BD=3,CD=3,所以點C的坐標(biāo)為(﹣3,9);②設(shè)點A向右滑動的距離為x,根據(jù)題意得點B向上滑動的距離也為x,如圖2:AO=1×cos∠BAO=1×cos30°=6.∴A'O=6﹣x,B'O=6+x,A'B'=AB=1在△A'OB'中,由勾股定理得,(6﹣x)2+(6+x)2=12,解得:x=6(﹣1),∴滑動的距離為6(﹣1);(2)設(shè)點C的坐標(biāo)為(x,y),過C作CE⊥x軸,CD⊥y軸,垂足分別為E,D,如圖3:則OE=﹣x,OD=y,∵∠ACE+∠BCE=90°,∠DCB+∠BCE=90°,∴∠ACE=∠DCB,又∵∠AEC=∠BDC=90°,∴△ACE∽△BCD,∴,即,∴y=﹣x,OC2=x2+y2=x2+(﹣x)2=4x2,∴當(dāng)|x|取最大值時,即C到y(tǒng)軸距離最大時,OC2有最大值,即OC取最大值,如圖,即當(dāng)C'B'旋轉(zhuǎn)到與y軸垂直時.此時OC=1,故答案為1.考點:相似三角形綜合題.19、BD=2.【解析】

試題分析:根據(jù)∠ACD=∠ABC,∠A是公共角,得出△ACD∽△ABC,再利用相似三角形的性質(zhì)得出AB的長,從而求出DB的長.試題解析:∵∠ACD=∠ABC,又∵∠A=∠A,∴△ABC∽△ACD,∴,∵AC=,AD=1,∴,∴AB=3,∴BD=AB﹣AD=3﹣1=2.點睛:本題主要考查了相似三角形的判定以及相似三角形的性質(zhì),利用相似三角形的性質(zhì)求出AB的長是解題關(guān)鍵.20、米.【解析】試題分析:根據(jù)矩形的性質(zhì),得到對邊相等,設(shè)這條河寬為x米,則根據(jù)特殊角的三角函數(shù)值,可以表示出ED和BF,根據(jù)EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四邊形AECF為矩形,∴EC=AF,AE=CF.設(shè)這條河寬為x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴這條河的寬為米.21、(1)證明見解析;(2);拓展:【解析】

(1)由題意得BD=CE,得出BE=CD,證出AB=AC,由SAS證明△ABE≌△ACD即可;(2)由等腰三角形的性質(zhì)和三角形內(nèi)角和定理求出∠BEA=∠EAB=70°,證出AC=CD,由等腰三角形的性質(zhì)得出∠ADC=∠DAC=70°,即可得出∠DAE的度數(shù);拓展:對△ABD的外心位置進行推理,即可得出結(jié)論.【詳解】(1)證明:∵點D、點E分別從點B、點C同時出發(fā),在線段BC上作等速運動,∴BD=CE,∴BC-BD=BC-CE,即BE=CD,∵∠B=∠C=40°,∴AB=AC,在△ABE和△ACD中,,∴△ABE≌△ACD(SAS);(2)解:∵∠B=∠C=40°,AB=BE,∴∠BEA=∠EAB=(180°-40°)=70°,∵BE=CD,AB=AC,∴AC=CD,∴∠ADC=∠DAC=(180°-40°)=70°,∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;拓展:解:若△ABD的外心在其內(nèi)部時,則△ABD是銳角三角形.∴∠BAD=140°-∠BDA<90°.∴∠BDA>50°,又∵∠BDA<90°,∴50°<∠BDA<90°.【點睛】本題考查了全等三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、三角形內(nèi)角和定理、三角形的外心等知識;熟練掌握等腰三角形的性質(zhì)是解題的關(guān)鍵.22、(1)相等,理由見解析;(2)2;(3).【解析】

(1)先判斷出AB=AD,再利用同角的余角相等,判斷出∠ABF=∠DAE,進而得出△ABF≌△DAE,即可得出結(jié)論;

(2)構(gòu)造出正方形,同(1)的方法得出△ABD≌△CBG,進而得出CG=AB,再判斷出△AFB∽△CFG,即可得出結(jié)論;

(3)先構(gòu)造出矩形,同(1)的方法得,∠BAD=∠CBP,進而判斷出△ABD∽△BCP,即可求出CP,再同(2)的方法判斷出△CFP∽△AFB,建立方程即可得出結(jié)論.【詳解】解:(1)BF=AE,理由:

∵四邊形ABCD是正方形,

∴AB=AD,∠BAD=∠D=90°,

∴∠BAE+∠DAE=90°,

∵AE⊥BF,

∴∠BAE+∠ABF=90°,

∴∠ABF=∠DAE,

在△ABF和△DAE中,∴△ABF≌△DAE,

∴BF=AE,(2)如圖2,

過點A作AM∥BC,過點C作CM∥AB,兩線相交于M,延長BF交CM于G,

∴四邊形ABCM是平行四邊形,

∵∠ABC=90°,

∴?ABCM是矩形,

∵AB=BC,

∴矩形ABCM是正方形,

∴AB=BC=CM,

同(1)的方法得,△ABD≌△BCG,

∴CG=BD,

∵點D是BC中點,

∴BD=BC=CM,

∴CG=CM=AB,

∵AB∥CM,

∴△AFB∽△CFG,∴(3)如圖3,在Rt△ABC中,AB=3,BC=4,

∴AC=5,

∵點D是BC中點,

∴BD=BC=2,

過點A作AN∥BC,過點C作CN∥AB,兩線相交于N,延長BF交CN于P,

∴四邊形ABCN是平行四邊形,

∵∠ABC=90°,∴?ABCN是矩形,

同(1)的方法得,∠BAD=∠CBP,

∵∠ABD=∠BCP=90°,

∴△ABD∽△BCP,∴∴∴CP=同(2)的方法,△CFP∽△AFB,∴∴∴CF=.【點睛】本題是四邊形綜合題,主要考查了正方形的性質(zhì)和判定,平行四邊形的判定,矩形的判定和性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),構(gòu)造出(1)題的圖形,是解本題的關(guān)鍵.23、(1),點D的坐標(biāo)為(2,-8)(2)點F的坐標(biāo)為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標(biāo).(3)分類討論,當(dāng)MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標(biāo)為(2,-8).(2)如圖,當(dāng)點F在x軸上方時,設(shè)點F的坐標(biāo)為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當(dāng)x=7時,y=,∴點F的坐標(biāo)為(7,).當(dāng)點F在x軸下方時,設(shè)同理求得點F的坐標(biāo)為(5,).綜上所述,點F的坐標(biāo)為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標(biāo)為(2,0).如圖,當(dāng)MN在x軸上方時,設(shè)T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設(shè)TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當(dāng)MN在x軸下方時,設(shè)TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論