一輪復(fù)習(xí)課件972利用空間向量求二面角與空間距離_第1頁
一輪復(fù)習(xí)課件972利用空間向量求二面角與空間距離_第2頁
一輪復(fù)習(xí)課件972利用空間向量求二面角與空間距離_第3頁
一輪復(fù)習(xí)課件972利用空間向量求二面角與空間距離_第4頁
一輪復(fù)習(xí)課件972利用空間向量求二面角與空間距離_第5頁
已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

第二課時利用空間向量求二面角與空間距離內(nèi)容索引核心考點(diǎn)·精準(zhǔn)研析核心素養(yǎng)·微專題核心素養(yǎng)測評思想方法構(gòu)造法判斷空間線面的位置關(guān)系【典例】

設(shè)l是直線,α,β是兩個不同的平面,則下列命題正確的是 世紀(jì)金榜導(dǎo)學(xué)號()A.若l∥α,l∥β,則α∥βB.若l∥α,l⊥β,則α⊥βC.若α⊥β,l⊥α,則l⊥βD.若α⊥β,l∥α,則l⊥β【解析】選B.設(shè)α∩β=a,若直線l∥a,且l?α,l?β,則l∥α,l∥β,因此α不一定平行于β,故A錯誤;由于l∥α,故在α內(nèi)存在直線l′∥l.又因?yàn)閘⊥β.所以l′⊥β,故α⊥β,所以B正確;若α⊥β,在β內(nèi)作交線的垂線l,則l⊥α,此時l在平面β內(nèi),因此C錯誤;已知α⊥β,若α∩β=a,l∥a,且l不在平面α,β內(nèi),則l∥α且l∥β,因此D錯誤.[構(gòu)造法解題]借助于長方體模型解決本題:對于A,如圖①,α與β可相交;對于B,如圖②,不論β在何位置,都有α⊥β;對于C,如圖③,l可與β平行或l

β內(nèi);對于D,如圖④,l⊥β或l

β或l∥β.【思想方法指導(dǎo)】(1)構(gòu)造法實(shí)質(zhì)上是結(jié)合題意構(gòu)造適合題意的直觀模型,然后將問題利用模型直觀地作出判斷,這樣減少了抽象性,避免了因考慮不全面而導(dǎo)致解題錯誤.(2)對于線面、面面平行、垂直的位置關(guān)系的判定,可構(gòu)造長方體或正方體化抽象為直觀去判斷.【遷移應(yīng)用】平面α外有兩條直線m和n,如果m和n在平面α內(nèi)的射影分別是直線m1和直線n1,給出下列四個命題:①m1⊥n1?m⊥n;②m⊥n?m1⊥n1;③m1與n1相交?m與n相交或重合;④m1與n1平行?m與n平行或重合.其中不正確的命題個數(shù)是 ()A.1 B.2 C.3 D.4【解析】選D.如圖,在正方體ABCD-A1B1C1D1中,AD1,AB1,B1C在底面上的射影分別是A1D1,A1B1,B1C1.

A1D1⊥A1B1,但AD1不垂直AB1,故①不正確;又AD1⊥B1C,但A1D1∥B1C1,故②也不正確;若m1與n1相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論