上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題含解析_第1頁
上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題含解析_第2頁
上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題含解析_第3頁
上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題含解析_第4頁
上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市上南中學2023-2024學年數(shù)學高一下期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.82.若正數(shù)x,y滿足x+3y=5xy,則3x+4y的最小值是()A. B. C.5 D.63.在中,,是的內(nèi)心,若,其中,動點的軌跡所覆蓋的面積為(

)A. B. C. D.4.已知全集,集合,,則為()A.{1,2,4} B.{2,3,4} C.{0,2,4} D.{0,2,3,4}5.如圖是一三棱錐的三視圖,則此三棱錐內(nèi)切球的體積為()A. B. C. D.6.下列結(jié)論不正確的是()A.若,,則 B.若,,則C.若,則 D.若,則7.如圖,將邊長為的正方形沿對角線折成大小等于的二面角分別為的中點,若,則線段長度的取值范圍為()A. B.C. D.8.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.9.已知等差數(shù)列的前項和為,若,,則的值為()A. B.0 C. D.18210.等差數(shù)列{an}的公差是2,若a2,a4A.n(n+1) B.n(n-1) C.n(n+1)2 D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知雙曲線:的右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線于交、兩點,若,則的離心率為__________.12.如圖,在正方體中,、分別是、的中點,則異面直線與所成角的大小是______.13.如圖,正方形中,分別為邊上點,且,,則________.14.若數(shù)列的前4項分別是,則它的一個通項公式是______.15.在等比數(shù)列中,,公比,若,則達到最大時n的值為____________.16.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對稱軸為x=1,已知當x∈[0,1]時,f(x)=121-x,則有下列結(jié)論:①2是函數(shù)fx的周期;②函數(shù)fx在1,2上遞減,在2,3上遞增;③函數(shù)f三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是定義域為R的奇函數(shù),當時,.Ⅰ求函數(shù)的單調(diào)遞增區(qū)間;Ⅱ,函數(shù)零點的個數(shù)為,求函數(shù)的解析式.18.在中,角、、所對的邊分別為、、,且滿足.(1)求角的大小;(2)若,,求的面積.19.已知拋物線的焦點為,過的直線交軸正半軸于點,交拋物線于兩點,其中點在第一象限.(Ⅰ)求證:以線段為直徑的圓與軸相切;(Ⅱ)若,,,求的取值范圍.20.某地統(tǒng)計局調(diào)查了10000名居民的月收入,并根據(jù)所得數(shù)據(jù)繪制了樣本的頻率分布直方圖如圖所示.(1)求居民月收入在[3000,3500)內(nèi)的頻率;(2)根據(jù)頻率分布直方圖求出樣本數(shù)據(jù)的中位數(shù);(3)為了分析居民的月收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這10000中用分層抽樣的方法抽出100人做進一步分析,則應(yīng)從月收入在[2500,3000)內(nèi)的居民中抽取多少人?21.如圖,在平面四邊形中,,,的面積為.⑴求的長;⑵若,,求的長.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由等比數(shù)列的性質(zhì)求得,再由等差數(shù)列的性質(zhì)可得結(jié)果.【詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【點睛】本題主要考查等比數(shù)列與等差數(shù)列的下標性質(zhì),屬于基礎(chǔ)題.解等差數(shù)列問題要注意應(yīng)用等差數(shù)列的性質(zhì)().2、C【解析】

由已知可得,則,所以的最小值,應(yīng)選答案C.3、A【解析】

畫出圖形,由已知條件便知P點在以BD,BP為鄰邊的平行四邊形內(nèi),從而所求面積為2倍的△AOB的面積,從而需求S△AOB:由余弦定理可以求出AB的長為5,根據(jù)O為△ABC的內(nèi)心,從而O到△ABC三邊的距離相等,從而,由面積公式可以求出△ABC的面積,從而求出△AOB的面積,這樣2S△AOB便是所求的面積.【詳解】如圖,根據(jù)題意知,P點在以BP,BD為鄰邊的平行四邊形內(nèi)部,∴動點P的軌跡所覆蓋圖形的面積為2S△AOB;在△ABC中,cos,AC=6,BC=7;∴由余弦定理得,;解得:AB=5,或AB=(舍去);又O為△ABC的內(nèi)心;所以內(nèi)切圓半徑r=,所以∴==;∴動點P的軌跡所覆蓋圖形的面積為.故答案為:A.【點睛】本題主要考查考查向量加法的平行四邊形法則,向量數(shù)乘的幾何意義,余弦定理,以及三角形內(nèi)心的定義,三角形的面積公式.意在考查學生對這些知識的掌握水平和分析推理能力.(2)本題的解題關(guān)鍵是找到P點所覆蓋的區(qū)域.4、C【解析】

先根據(jù)全集U求出集合A的補集,再求與集合B的并集.【詳解】由題得,故選C.【點睛】本題考查集合的運算,屬于基礎(chǔ)題.5、D【解析】把此三棱錐嵌入長寬高分別為:的長方體中三棱錐即為所求的三棱錐其中,,,則,故可求得三棱錐各面面積分別為:,,,故表面積為三棱錐體積設(shè)內(nèi)切球半徑為,則故三棱錐內(nèi)切球體積故選6、B【解析】

根據(jù)不等式的性質(zhì),對選項逐一分析,由此得出正確選項.【詳解】對于A選項,不等式兩邊乘以一個正數(shù),不等號不改變方程,故A正確.對于B選項,若,則,故B選項錯誤.對于C、D選項,不等式兩邊同時加上或者減去同一個數(shù),不等號方向不改變,故C、D正確.綜上所述,本小題選B.【點睛】本小題主要考查不等式的性質(zhì),考查特殊值法解選擇題,屬于基礎(chǔ)題.7、A【解析】

連接和,由二面角的定義得出,由結(jié)合為的中點,可知是的角平分線且,由的范圍可得出的范圍,于是得出的取值范圍.【詳解】連接,可得,即有為二面角的平面角,且,在等腰中,,且,,則,故答案為,故選A.【點睛】本題考查線段長度的取值范圍,考查二面角的定義以及銳角三角函數(shù)的定義,解題的關(guān)鍵在于充分研究圖形的幾何特征,將所求線段與角建立關(guān)系,借助三角函數(shù)來求解,考查推理能力與計算能力,屬于中等題.8、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關(guān)幾何體體積公式進行計算.由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.9、B【解析】

由,可得,可得的值.【詳解】解:已知等差數(shù)列中,可得,即:,,故選B【點睛】本題主要考查等差數(shù)列的性質(zhì),從數(shù)列自身的特點入手是解決問題的關(guān)鍵.10、A【解析】試題分析:由已知得,a42=a2?a8,又因為{an}【考點】1、等差數(shù)列通項公式;2、等比中項;3、等差數(shù)列前n項和.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:點睛:求雙曲線的離心率的值(或范圍)時,可將條件中提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,再根據(jù)和轉(zhuǎn)化為關(guān)于離心率e的方程或不等式,通過解方程或不等式求得離心率的值(或取值范圍).12、【解析】

將所求兩條異面直線平移到一起,解三角形求得異面直線所成的角.【詳解】連接,根據(jù)三角形中位線得到,所以是異面直線與所成角.在三角形中,,所以三角形是等邊三角形,故.故填:.【點睛】本小題主要考查異面直線所成的角的求法,考查空間想象能力,屬于基礎(chǔ)題.13、(或)【解析】

先設(shè),根據(jù)題意得到,再由兩角和的正切公式求出,得到,進而可得出結(jié)果.【詳解】設(shè),則所以,所以,因此.故答案為【點睛】本題主要考查三角恒等變換的應(yīng)用,熟記公式即可,屬于??碱}型.14、【解析】

根據(jù)等比數(shù)列的定義即可判斷出該數(shù)列是以為首項,為公比的等比數(shù)列,根據(jù)等比數(shù)列的通項公式即可寫出該數(shù)列的一個通項公式.【詳解】解:∵,該數(shù)列是以為首項,為公比的等比數(shù)列,該數(shù)列的通項公式是:,故答案為:.【點睛】本題主要考查等比數(shù)列的定義以及等比數(shù)列的通項公式,屬于基礎(chǔ)題.15、7【解析】

利用,得的值【詳解】因為,,所以為7.故答案為:7【點睛】本題考查等比數(shù)列的項的性質(zhì)及單調(diào)性,找到與1的分界是關(guān)鍵,是基礎(chǔ)題16、①②④【解析】

依據(jù)題意作出函數(shù)f(x)的圖像,通過圖像可以判斷以下結(jié)論是否正確?!驹斀狻孔鞒龊瘮?shù)f(x)的圖像,由圖像可知2是函數(shù)fx的周期,函數(shù)fx在1,2上遞減,在2,3上遞增,函數(shù)當x∈3,4時,f(x)=f(x-4)=f(4-x)=故正確的結(jié)論有①②④。【點睛】本題主要考查函數(shù)的圖像與性質(zhì)以及數(shù)形結(jié)合思想,意在考查學生的邏輯推理能力。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、Ⅰ見解析;(Ⅱ)【解析】

Ⅰ利用函數(shù)的奇偶性,利用對稱性,寫出函數(shù)的解析式;然后求解增區(qū)間.Ⅱ求出函數(shù)的表達式,利用數(shù)形結(jié)合求解函數(shù)的解析式.【詳解】解:Ⅰ當時,,是奇函數(shù),,,.當時,函數(shù)開口向上,增區(qū)間是:;當時,函數(shù)是二次函數(shù),開口向下,增區(qū)間是:;函數(shù)的單調(diào)增區(qū)間為:,;Ⅱ當時,,最小值為;當時,,最大值為1.據(jù)此可作出函數(shù)的圖象,根據(jù)圖象得,若方程恰有3個不同的解,則a的取值范圍是此時時,,或時,.所以.【點睛】本題主要考查函數(shù)奇偶性的應(yīng)用,以及方程根的個數(shù)問題,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.18、(1)(2)【解析】

分析:(1)由,利用正弦定理可得,結(jié)合兩角和的正弦公式以及誘導公式可得;從而可得結(jié)果;(2)由余弦定理可得可得,所以.詳解:(1)∵∴∴(2)∵∴∴點睛:解三角形時,有時可用正弦定理,有時也可用余弦定理,應(yīng)注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.19、(Ⅰ)證明見解析;(Ⅱ).【解析】

試題分析:(Ⅰ)題意實質(zhì)上證明線段的中點到軸的距離等于線段長的一半,根據(jù)拋物線的定義設(shè)可證得;(Ⅱ)同樣設(shè),,把已知,用坐標表示出來,消去坐標及,得出與的關(guān)系,此時就可得出的取值范圍.試題解析:(Ⅰ)由已知,設(shè),則,圓心坐標為,圓心到軸的距離為,圓的半徑為,所以,以線段為直徑的圓與軸相切.(Ⅱ)解法一:設(shè),由,,得,,所以,,由,得.又,,所以.代入,得,,整理得,代入,得,所以,因為,所以的取值范圍是.解法二:設(shè),,將代入,得,所以(*),由,,得,,所以,,,將代入(*)式,得,所以,.代入,得.因為,所以的取值范圍是.考點:拋物線的定義,拋物線的焦點弦問題.20、(1)0.15(2)2400(3)25人【解析】

(1)由頻率分布直方圖計算可得月收入在[3000,3500)內(nèi)的頻率;(2)分別計算小長方形的面積值,利用中位數(shù)的特點即可確定中位數(shù)的值;(3)首先確定10000人中月收入在[2500,3000]內(nèi)的人數(shù),然后結(jié)合分層抽樣的特點可得應(yīng)抽取的人數(shù).【詳解】(1)居民月收入在[3000,3500]內(nèi)的頻率為(2)因為,,,,所以樣本數(shù)據(jù)的中位數(shù)為.(3)居民月收入在[2500,3000]內(nèi)的頻率為,所以這10000人中月收入在[2500,3000]內(nèi)的人數(shù)為.從這10000人中用分層抽樣的方法抽出100人,則應(yīng)從月收入在[2500,3000]內(nèi)的居民中抽取(人).【點睛】利用頻率分布直方圖求眾數(shù)、中位數(shù)和平均數(shù)時,應(yīng)注意三點:①最高的小長方形底邊中點的橫坐標即是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論