版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆福建省龍巖市龍巖二中數(shù)學(xué)高一下期末綜合測試試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列{an}滿足a1=2A.2 B.-3 C.-122.若,且,則“”是“函數(shù)有零點”的(
)A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.在正三棱錐中,,則側(cè)棱與底面所成角的正弦值為()A. B. C. D.4.已知三棱柱的底面為直角三角形,側(cè)棱長為2,體積為1,若此三棱柱的頂點均在同一球面上,則該球半徑的最小值為()A.1 B.2 C. D.5.不等式的解集為,則不等式的解集為()A.或 B. C. D.或6.設(shè)函數(shù),若對任意的實數(shù)x都成立,則的最小值為()A. B. C. D.17.空間中可以確定一個平面的條件是()A.三個點 B.四個點 C.三角形 D.四邊形8.已知數(shù)列的前項和滿足.若對任意正整數(shù)都有恒成立,則實數(shù)的取值范圍為()A. B. C. D.9.函數(shù)的單調(diào)減區(qū)間為A.B.C.D.10.在△ABC中,a=3,b=3,A=,則C為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知三個事件A,B,C兩兩互斥且,則P(A∪B∪C)=__________.12.設(shè),為單位向量,其中,,且在方向上的射影數(shù)量為2,則與的夾角是___.13.已知為等差數(shù)列,,,,則______.14.已知三棱錐,若平面ABC,,則異面直線PB與AC所成角的余弦值為______.15.已知,,若,則實數(shù)________.16.已知,且,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.(2012年蘇州17)如圖,在中,已知為線段上的一點,且.(1)若,求的值;(2)若,且,求的最大值.18.在等差數(shù)列中,為其前項和(),且,.(1)求數(shù)列的通項公式;(2)設(shè),數(shù)列的前項為,證明:19.已知數(shù)列滿足,數(shù)列滿足,其中為的前項和,且(1)求數(shù)列和的通項公式(2)求數(shù)列的前項和.20.求下列方程和不等式的解集(1)(2)21.已知圓C:內(nèi)有一點P(2,2),過點P作直線l交圓C于A、B兩點.(1)當(dāng)弦AB被點P平分時,寫出直線l的方程;(2)當(dāng)直線l的傾斜角為45o時,求弦AB的長.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
先通過列舉找到數(shù)列的周期,再利用數(shù)列的周期求值.【詳解】由題得a2所以數(shù)列的周期為4,所以a2020故選:D【點睛】本題主要考查遞推數(shù)列和數(shù)列的周期,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.2、A【解析】
結(jié)合函數(shù)零點的定義,利用充分條件和必要條件的定義進行判斷,即可得出答案.【詳解】由題意,當(dāng)時,,函數(shù)與有交點,故函數(shù)有零點;當(dāng)有零點時,不一定取,只要滿足都符合題意.所以“”是“函數(shù)有零點”的充分不必要條件.故答案為:A【點睛】本題主要考查了函數(shù)零點的概念,以及對數(shù)函數(shù)的圖象與性質(zhì)的應(yīng)用,其中解答中熟記函數(shù)零點的定義,以及對數(shù)函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解析】
利用正三棱錐的性質(zhì),作出側(cè)棱與底面所成角,利用直角三角形進行計算.【詳解】連接P與底面正△ABC的中心O,因為是正三棱錐,所以面,所以為側(cè)棱與底面所成角,因為,所以,所以,故選B.【點睛】本題考查線面角的計算,考查空間想象能力、邏輯推理能力及計算求解能力,屬于中檔題.4、D【解析】
先證明棱柱為直棱柱,再求出棱柱外接球的半徑,利用基本不等式求出其最小值.【詳解】∵三棱柱內(nèi)接于球,∴棱柱各側(cè)面均為平行四邊形且內(nèi)接于圓,所以棱柱的側(cè)棱都垂直底面,所以該三棱柱為直三棱柱.設(shè)底面三角形的兩條直角邊長為,,∵三棱柱的高為2,體積是1,∴,即,將直三棱柱補成一個長方體,則直三棱柱與長方體有同一個外接球,所以球的半徑為.故選D【點睛】本題主要考查幾何體外接球的半徑的計算和基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.5、A【解析】不等式的解集為,的兩根為,,且,即,解得則不等式可化為解得故選6、B【解析】
對任意的實數(shù)x都成立,說明三角函數(shù)f(x)在時取最大值,利用這個信息求ω的值.【詳解】由題意,當(dāng)時,取到最大值,所以,解得,因為,所以當(dāng)時,取到最小值.故選:B.【點睛】本題考查正弦函數(shù)的圖象及性質(zhì),三角函數(shù)的單調(diào)區(qū)間、對稱軸、對稱中心、最值等為??碱},本題屬于基礎(chǔ)題.7、C【解析】
根據(jù)公理2即可得出答案.【詳解】在A中,不共線的三個點能確定一個平面,共線的三個點不能確定一個平面,故A錯誤;在B中,不共線的四個點最多能確定四個平面,故B錯誤;在C中,由于三角形的三個頂點不共線,因此三角形能確定一個平面,故C正確;在D中,四邊形有空間四邊形和平面四邊形,空間四邊形不能確定一個平面,故D錯誤.【點睛】本題對公理2進行了考查,確定一個平面關(guān)鍵是對過不在一條直線上的三點,有且只有一個平面的理解.8、C【解析】
先利用求出數(shù)列的通項公式,于是可求出,再利用參變量分離法得到,利用數(shù)列的單調(diào)性求出數(shù)列的最小項的值,可得出實數(shù)的取值范圍.【詳解】當(dāng)時,,即,得;當(dāng)時,由,得,兩式相減得,得,,所以,數(shù)列為等比數(shù)列,且首項為,公比為,.,由,得,所以,數(shù)列單調(diào)遞增,其最小項為,所以,,因此,實數(shù)的取值范圍是,故選C.【點睛】本題考查利用數(shù)列前項和求數(shù)列的通項,其關(guān)系式為,其次考查了數(shù)列不等式與參數(shù)的取值范圍問題,一般利用參變量分離法轉(zhuǎn)化為數(shù)列的最值問題來求解,考查化歸與轉(zhuǎn)化問題,屬于中等題.9、A【解析】
根據(jù)正弦函數(shù)的單調(diào)遞減區(qū)間,列出不等式求解,即可得出結(jié)果.【詳解】的單調(diào)減區(qū)間為,,解得函數(shù)的單調(diào)減區(qū)間為.故選A.【點睛】本題主要考查三角函數(shù)的單調(diào)性,熟記正弦函數(shù)的單調(diào)區(qū)間即可,屬于常考題型.10、C【解析】
由正弦定理先求出的值,然后求出結(jié)果【詳解】在中,,則故選【點睛】本題運用正弦定理解三角形,熟練運用公式即可求出結(jié)果,較為簡單。二、填空題:本大題共6小題,每小題5分,共30分。11、0.9【解析】
先計算,再計算【詳解】故答案為0.9【點睛】本題考查了互斥事件的概率計算,屬于基礎(chǔ)題型.12、【解析】
利用在方向上的射影數(shù)量為2可得:,即可整理得:,問題得解.【詳解】因為在方向上的射影數(shù)量為2,所以,整理得:又,為單位向量,所以.設(shè)與的夾角,則所以與的夾角是【點睛】本題主要考查了向量射影的概念及方程思想,還考查了平面向量夾角公式應(yīng)用,考查轉(zhuǎn)化能力及計算能力,屬于中檔題.13、【解析】
由等差數(shù)列的前項和公式,代入計算即可.【詳解】已知為等差數(shù)列,且,,所以,解得或(舍)故答案為【點睛】本題考查了等差數(shù)列前項和公式的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
過B作,且,則或其補角即為異面直線PB與AC所成角由此能求出異面直線PB與AC所成的角的余弦值.【詳解】過B作,且,則四邊形為菱形,如圖所示:或其補角即為異面直線PB與AC所成角.設(shè).,,平面ABC,,.異面直線PB與AC所成的角的余弦值為.故答案為.【點睛】本題考查異面直線所成角的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).15、2或【解析】
根據(jù)向量平行的充要條件代入即可得解.【詳解】由有:,解得或.故答案為:2或.【點睛】本題考查了向量平行的應(yīng)用,屬于基礎(chǔ)題.16、【解析】試題分析:由得:解方程組:得:或因為,所以所以不合題意,舍去所以,所以,答案應(yīng)填:.考點:同角三角函數(shù)的基本關(guān)系和兩角差的三角函數(shù)公式.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】試題分析:(1)利用平面向量基本定理可得.(2)利用題意可得,則的最大值為.試題解析:(1),而,∴.(2)∴當(dāng)時,的最大值為.18、(1);(2)見解析【解析】
(1)運用等差數(shù)列的通項公式和求和公式,解方程組,可得首項和公差,即可得到所求通項;(2)化簡,再利用裂項相消求數(shù)列的和,化簡整理,即可證得.【詳解】(1)設(shè)等差數(shù)列的公差是,由,,得解得,,∴.(2)由(1)知,,∴,,因為,則成立.【點睛】本題考查等差數(shù)列的通項公式的求法,也考查了裂項相消求和求數(shù)列的和,考查化簡整理的運算能力,屬于中檔題.19、(1);(2)【解析】
(1)由題意可得,由等差數(shù)列的通項公式可得;由數(shù)列的遞推式,結(jié)合等比數(shù)列的定義和通項公式可得;(2),運用數(shù)列的錯位相減法求和,結(jié)合等比數(shù)列的求和公式可得所求和.【詳解】解:(1)由,同乘以得,可知是以2為公差的等差數(shù)列,而,故;又,相減得,,可知是以為公比的等比數(shù)列,而,故;(2)因為,,,兩式相減得.【點睛】本題主要考查等差數(shù)列和等比數(shù)列的通項公式和求和公式的運用,考查數(shù)列的錯位相減法求和,考查化簡運算能力,屬于中檔題.20、(1)或;(2).【解析】
(1)先將方程變形得到,根據(jù),得到,進而可求出結(jié)果;(2)由題意得到,求解即可得出結(jié)果.【詳解】(1)由得,因為,所以,因此或;即原方程的解集為:或;(2)由得,即,解得:.故,原不等式的解集為:.【點睛】本題主要考查解含三角函數(shù)的方程,以及反三角函數(shù)不等式,熟記三角函數(shù)性質(zhì),根據(jù)函數(shù)單調(diào)性即可求解,屬于??碱}型.21、(1)(2)【解析】分析:(1)為的中點,故,所以斜
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省福州市九校聯(lián)考2025-2026學(xué)年七年級上學(xué)期期中語文試題(含答案)(含解析)
- 2026年行政人員職業(yè)素養(yǎng)進階培訓(xùn)
- 2026福建中醫(yī)藥大學(xué)附屬人民醫(yī)院招聘非在編合同制人員40人備考題庫(一)完整參考答案詳解
- 城市公共停車場管理手冊
- 2026年農(nóng)業(yè)科技創(chuàng)新成果轉(zhuǎn)化路徑
- 職業(yè)噪聲與心血管疾病精準(zhǔn)預(yù)防策略
- 口腔種植技術(shù)年終總結(jié)(3篇)
- 2022~2023初級護師考試題庫及答案第653期
- 中國北京科學(xué)院科技戰(zhàn)略咨詢研究院2022年招聘人員試題及答案解析1
- 職業(yè)健康遠程隨訪的醫(yī)患協(xié)同管理策略優(yōu)化
- 2025北京西城區(qū)初一(下)期末英語試題及答案
- 2026.01.01施行的《招標(biāo)人主體責(zé)任履行指引》
- DB11∕T 689-2025 既有建筑抗震加固技術(shù)規(guī)程
- 2025年湖南公務(wù)員《行政職業(yè)能力測驗》試題及答案
- 提前招生面試制勝技巧
- 2024中國類風(fēng)濕關(guān)節(jié)炎診療指南課件
- 2026年中國家居行業(yè)發(fā)展展望及投資策略報告
- 陜西省西安鐵一中2026屆高一物理第一學(xué)期期末教學(xué)質(zhì)量檢測試題含解析
- DB3207∕T 1046-2023 香菇菌棒生產(chǎn)技術(shù)規(guī)程
- 2025-2030腦機接口神經(jīng)信號解碼芯片功耗降低技術(shù)路線圖報告
- 空調(diào)安裝應(yīng)急預(yù)案
評論
0/150
提交評論