2024河北省石家莊市公務員考試數量關系專項練習題完美版_第1頁
2024河北省石家莊市公務員考試數量關系專項練習題完美版_第2頁
2024河北省石家莊市公務員考試數量關系專項練習題完美版_第3頁
2024河北省石家莊市公務員考試數量關系專項練習題完美版_第4頁
2024河北省石家莊市公務員考試數量關系專項練習題完美版_第5頁
已閱讀5頁,還剩68頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024河北省石家莊市公務員考試數量關系專項練習題第一部分單選題(200題)1、一人騎車上班需要50分鐘,途中騎了一段時間后自行車壞了,只好推車去上班,結果晚到10分鐘,如果騎車的速度比步行的速度快一倍,則步行了多少分鐘?()

A、20

B、34

C、40

D、50

【答案】:答案:A

解析:設騎車速度為2,步行速度為1,設步行時間為t分鐘,由題意可知,50×2=2(50+10-t)+1t,得t=20,即步行了20分鐘。故選A。2、-1,3,-3,-3,-9,()

A、-9

B、-4

C、-14

D、-45

【答案】:答案:D

解析:題干倍數關系明顯,考慮作商。后項除以前項得到新數列:-3、-1、1、3,新數列為公差是2的等差數列,則新數列的下一項應為5,所求項為:-9×5=-45。故選D。3、21,59,1117,2325,(),9541

A、3129

B、4733

C、6833

D、8233

【答案】:答案:B

解析:原數列各項可作如下拆分:[2|1],[5|9],[11|17],[23|25],[47|33],[95|41]。其中前半部分數字作差后構成等比數列,后半部分作差后構成等差數列。因此未知項為4733。故選B。4、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。5、12,23,34,45,56,()

A、66

B、67

C、68

D、69

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數,構成公差為11的等差數列,即所填的數字為56+11=67。故選B。6、某快速反應部隊運送救災物資到災區(qū)。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區(qū),則機場到災區(qū)的距離是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:設機場到災區(qū)的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。7、9,20,42,86,(),350

A、172

B、174

C、180

D、182

【答案】:答案:B

解析:20=9×2+2,42=20×2+2,86=42×2+2,第一項×2+2=第二項,即所填數字為86×2+2=174。故選B。8、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。9、一次數學考試共有20道題,規(guī)定:答對一題得2分,答錯一題扣1分,未答的題不計分??荚嚱Y束后,小明共得23分,他想知道自己做錯了幾道題,但只記得未答的題的數目是一個偶數。請你幫助小明計算一下,他答錯了多少道題?()

A、3

B、4

C、5

D、6

【答案】:答案:A

解析:設答對x道,答錯y道,未答z道,根據共有20道題,可得x+y+z=20;由共得23分,可得2x-y=23,由于2x為偶數,23為奇數,故y為奇數,排除B、D。代入A選項,可得2x-3=23,解得x=13,此時z=4,符合未答題目數是偶數。故選A。10、226,264,316,388,()

A、236

B、386

C、486

D、566

【答案】:答案:C

解析:226=225+1=152+13,264=256+8=162+23,316=289+27=172+33,388=324+64=182+43,由此可以推知下一項應為192+53=486。故選C。11、2,7,13,20,25,31,()

A、35

B、36

C、37

D、38

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得5,6,7,5,6,為(5,6,7)三個數字組成的循環(huán)數列,即所填數字為31+7=38。故選D。12、8,6,-4,-54,()

A、-118

B、-192

C、-320

D、-304

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-2,-10,-50,構成公比為5的等比數列,即所填數字為-54+(-250)=-304。故選D。13、2,3,7,22,155,()

A、2901

B、3151

C、3281

D、3411

【答案】:答案:D

解析:7=3×2+1,22=7×3+1,155=22×7+1,即所填數字為22×155+1=3411。故選D。14、某一學校有500人,其中選修數學的有359人,選修文學的有408人,那么兩種課程都選的學生至少有多少?()

A、165人

B、203人

C、267人

D、199人

【答案】:答案:C

解析:設至少有x人兩種課程都選,則359-x+408-x+x≤500,解得x≥267,則兩種課程都選的學生至少有267人。故選C。15、在某企業(yè),40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。16、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。17、11,34,75,(),235

A、138

B、139

C、140

D、14

【答案】:答案:C

解析:思路一:11=23+3;34=33+7;75=43+11;140=53+15;235=63+19其中2,3,4,5,6等差;3,7,11,15,19等差。思路二:二級等差。故選C。18、設袋中裝有標著數字為1,2,…,8等8個簽,并規(guī)定標有數字1,4,7的為中獎號。甲、乙、丙、丁

4人依次從袋中隨機抽取一個簽、已知丙中獎了、則乙不中獎的概率為多少?()

A、5/8

B、3/7

C、3/8

D、5/7

【答案】:答案:D

解析:已知丙中獎,則剩余7個簽,還有2個是中獎號,可得乙不中獎概率為。故選D。19、2,2,6,14,34,()

A、82

B、50

C、48

D、62

【答案】:答案:A

解析:2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82。故選A。20、-3,-2,5,24,61,()

A、122

B、156

C、240

D、348

【答案】:答案:A

解析:相鄰兩項逐差:因此,未知項=61+61=122。故選A。21、某果品公司計劃安排6輛汽車運載A、B、C三種水果共32噸進入某市銷售,要求每輛車只裝同一種水果且必須裝滿,根據下表提供的信息,則有()種安排車輛方案。

A、1

B、2

C、3

D、4

【答案】:答案:A

解析:設運送三種水果的車輛數分別為X、Y、Z,根據題意可列式①X+Y+Z=6;②6X+5Y+4Z=32,X、Y、Z為車輛數都為正整數,②中6X和4Z都為偶數,所以Y必然是偶數,且Y≤4,Y=2或4。當Y=4時X=2、Z=0不符合題意,故本題解只有一組X=3、Y=2、Z=1。故選A。22、一條馬路的兩邊各立著10盞電燈,現在為了節(jié)省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續(xù)關掉兩盞。問總共有多少種方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。23、有一1500米的環(huán)形跑道,甲,乙二人同時同地出發(fā),若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。

A、330米/分鐘

B、360米/分鐘

C、375米/分鐘

D、390米/分鐘

【答案】:答案:B

解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。24、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。25、1,2,4,3,5,6,9,18,()

A、14

B、24

C、27

D、36

【答案】:答案:A

解析:位于奇數項的1、4、5、9構成和數列,位于偶數項的2、3、6、18構成積數列,即所填的奇數項應為5+9=14。故選A。26、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業(yè)花費3個月時間。開始營業(yè)后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業(yè),營業(yè)后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。27、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。28、140支社區(qū)足球隊參加全市社區(qū)足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。29、2,3,8,27,32,(),128

A、64

B、243

C、275

D、48

【答案】:答案:B

解析:間隔組合數列。奇數項是公比為4的等比數列,偶數項是公比為9的等比數列,所求項為27×9=(243)。故選B。30、3,-6,12,-24,()

A、42

B、44

C、46

D、48

【答案】:答案:D

解析:公比為-2的等比數列。故選D。31、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收?。怀^5噸不超過10噸的部分按6元/噸收?。怀^10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。32、某陶瓷公司要到某地推銷瓷器,公司與該地相距900千米。已知瓷器成本為每件4000元,每件瓷器運費為2.5元/千米。如果在運輸及銷售過程中瓷器的損耗為25%,那么該公司要想實現20%的利潤率,瓷器的零售價應是()元。

A、8000

B、8500

C、9600

D、1000

【答案】:答案:D

解析:以一件瓷器為例,1件瓷器成本為4000元,運費為2.5×900=2250元,則成本為4000+2250=6250元,要想實現20%的利潤率,應收入6250×(1+20%)=7500元;由于損耗,實際的銷售產品數量為1×(1-25%)=75%,所以實際零售價為7500÷75%=1000元。故選D。33、某種茶葉原價30元一包,為了促銷,降低了價格,銷量增加了二倍,收入增加了五分之三,則一包茶葉降價()元。

A、12

B、14

C、13

D、11

【答案】:答案:B

解析:設原來茶葉的銷量為1,那么現在銷量為3。原來收入為30元,現在收入為30×(1+3/5)=48元,每包茶葉為48÷3=16元,降價30-16=14元。故選B。34、某水庫共有10個泄洪閘,當10個泄洪閘全部打開時,8小時可將水位由警戒水位降至安全水位;只打開6個泄洪閘時,這個過程為24個小時,如水庫每小時的入庫量穩(wěn)定,問如果打開8個泄洪閘時,需要多少小時可將水位降至安全水位?()

A、10

B、12

C、14

D、16

【答案】:答案:B

解析:設水庫每小時的入庫量為x。根據題意可列方程(10-x)8=(6-x)24,解得x=4,故水庫警戒水位至安全水位的容量為(10-4)×8=48;設打開8個泄洪閘需t小時可將水位降至安全水位;則48=(8-4)t,解得t=12。故選B。35、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,奇數項是2,偶數項構成公差為1的等差數列,即所填數字為6+(-1)=5。故選B。36、4,8,28,216,()

A、6020

B、2160

C、4200

D、4124

【答案】:答案:A

解析:4×(8-1)=28,8×(28-1)=216,即所填數字為28×(216-1)=6020。故選A。37、0,4,18,(),100

A、48

B、58

C、50

D、38

【答案】:答案:A

解析:思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差數列。思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100。思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100。思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100可以發(fā)現:0,2,6,(12),20依次相差2,4,(6),8。思路五:0=12×0;4=22×1;18=32×2;()=X2×Y;100=52×4所以()=42×3。38、有一1500米的環(huán)形跑道,甲,乙二人同時同地出發(fā),若同方向跑,50分鐘后甲比乙多跑一圈,若以反方向跑,2分鐘后二人相遇,則乙的速度為()。

A、330米/分鐘

B、360米/分鐘

C、375米/分鐘

D、390米/分鐘

【答案】:答案:B

解析:同向追及50分鐘后甲比乙多跑一圈得:(V甲-V乙)×50=1500;由反向跑2分鐘后相遇有:(V甲+V乙)×2=1500,解得V乙=360(米/分鐘)。故選B。39、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。40、甲和乙兩個公司2014年的營業(yè)額相同。2015年乙公司受店鋪改造工程影響,營業(yè)額比上年下降300萬元。而甲公司則引入電商業(yè)務,營業(yè)額比上年增長600萬元,正好是乙公司2015年營業(yè)額的3倍。則2014年兩家公司的營業(yè)額之和為多少萬元?()

A.900

B.1200

C.1500

D.1800

【答案】:答案:C

解析:設2014年兩家公司營業(yè)額為x萬元,由題意可得萬元,則2014年兩家公司營業(yè)額為故正確答案為C。41、1,3,2,6,11,19,()

A、24

B、36

C、29

D、38

【答案】:答案:B

解析:該數列為和數列,即前三項之和為第四項。故空缺處應為6+11+19=36。故選B。42、2,3,10,15,26,35,()

A、40

B、45

C、50

D、55

【答案】:答案:C

解析:2=1平方+1,3=2平方-1,10=3平方+1,15=4平方-1,26=5平方+1,35=6平方-1,問號=7平方+1,問號=50。故選C。43、某快速反應部隊運送救災物資到災區(qū)。飛機原計劃每分鐘飛行12千米,由于災情危急,飛行速度提高到每分鐘15千米,結果比原計劃提前30分鐘到達災區(qū),則機場到災區(qū)的距離是多少千米?()

A、1600

B、1800

C、2050

D、2250

【答案】:答案:B

解析:設機場到災區(qū)的距離為x,由每分鐘飛行12千米可知,原飛行時間為;由每分鐘15千米可知,現飛行時間為。根據比原計劃提前30分鐘,可得,解得x=1800(千米)。故選B。44、祖父今年65歲,3個孫子的年齡分別是15歲、13歲與9歲,問多少年后3個孫子的年齡之和等于祖父的年齡?()

A、23

B、14

C、25

D、16

【答案】:答案:B

解析:設n年后3個孫子的年齡之和等于祖父的年齡,可列方程:65+n=(15+n)+(13+n)+(9+n),解得n=14。故選B。45、小王登山,上山的速度是4km/h,到達山頂后原路返回,速度為6km/h,設山路長為9km,小王的平均速度為()km/h。

A、5

B、4.8

C、4.6

D、4.4

【答案】:答案:B

解析:平均速度為總路程除以總時間,即(2×9)÷(9÷4+9÷6)=4.8km/h。故選B。46、1,6,36,216,()

A、1296

B、1297

C、1299

D、1230

【答案】:答案:A

解析:數列是公比為6的等比數列,則所求項為216×6=1296(也可用尾數法,尾數為6)。故選A。47、某單位組織工會活動,30名員工自愿參加做游戲。游戲規(guī)則:按1~30號編號并報數,第一次報數后,單號全部站出來,然后每次余下的人中第一個開始站出來,隔一人站出來一個人。最后站出來的人給大家唱首歌。那么給大家唱歌的員工編號是()。

A、14

B、16

C、18

D、20

【答案】:答案:B

解析:第一次報數后,單號全部站出來,剩余號碼為2、4、6、8、10······30,均為2的倍數;每次余下的人中第一個開始站出來,隔一人站出來一個人,剩余號碼為4、8、12、16、20、24、28,均為4的倍數;再從余下的號碼中第一個人開始站出來,隔一個人站出來一個人,剩余號碼為8、16、24,均為8的倍數;重復上一次的步驟,剩余16號,為16的倍數。1—30中16的倍數只有16。故選B。48、在某企業(yè),40%的員工有至少3年的工齡,16個員工有至少8年的工齡。如果90%的員工的工齡不足8年,則工齡至少3年但不足8年的員工有()人。

A、48

B、64

C、80

D、144

【答案】:答案:A

解析:由于不足8年工齡的員工占90%,則至少8年工齡的員工占1-90%=10%,可得員工總數為16÷10%=160(人),故工齡至少3年但不足8年的員工有160×40%-16=48(人)。故選A。49、有4堆木材,都堆成正三角形垛,層數分別為5,6,7,8層,那么共有木材()根。

A、110

B、100

C、120

D、130

【答案】:答案:B

解析:5層木材有1+2+3+4+5=15,6層木材有1+2+3+4+5+6=21,7層木材有1+2+3+4+5+6+7=28,8層木材有1+2+3+4+5+6+7+8=36,所以共有15+21+28+36=100根木材。故選B。50、為了國防需要,A基地要運載1480噸的戰(zhàn)備物資到1100千米外的B基地。現在A基地只有一架“運9”大型運輸機和一列“貨運列車”,“運9”速度550千米每小時,載重能力為20噸,“貨運列車”速度100千米每小時,運輸能力為600噸,那么這批戰(zhàn)備物資到達B基地的最短時間為:

A.53小時

B.54小時

C.55小時

D.56小時

【答案】:答案:B

解析:由題意可知,運輸機運輸一次往返需要2×(1100÷550)=4小時,單位時間運輸5噸;列車運輸一次往返需要2×(1100÷100)=22小時,單位時間運輸20+噸。要求運輸時間最短,那么必然要讓單位時間運輸量大的列車盡可能多地運輸。貨運列車運輸能力為600噸,運輸總量為1480噸,因此可推知貨運列車共運輸兩次,即噸。還剩1480-1200=280噸,需要運輸機運輸280÷20=14次。且第14次不用計算返回所用的時間,則最短時間為小時。故正確答案為B。51、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。52、甲乙兩船從相距50千米的地方起航,船速不變。兩船在逆水中航行,甲航行100千米恰好趕上乙;如果兩船在順水中航行,那么甲追上乙需航行多遠?()

A、500千米

B、100~500千米

C、100千米

D、大于100千米

【答案】:答案:D

解析:不管是順水還是逆水,水速對兩船的影響是一樣的,影響追及時間產生的僅為兩船船速之差。因此無論逆水還是順水,追及時間相同,逆水時甲船追上乙船需航行100千米,而順水航行時速度大于逆水時的速度,航行距離應大于100千米。故選D。53、一旅行團共有50位游客到某地旅游,去A景點的游客有35位,去B景點的游客有32位,去C景點的游客有27位,去A、B景點的游客有20位,去B、C景點的游客有15位,三個景點都去的游客有8位,有2位游客去完一個景點后先行離團,還有1位游客三個景點都沒去。那么,50位游客中有多少位恰好去了兩個景點?()

A、29

B、31

C、35

D、37

【答案】:答案:A

解析:設去兩個景點的人數為y,根據三集合非標準型公式可得:35+32+27-y-2×8=50-1,解得y=29。故選A。54、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。55、4,12,8,10,()

A、6

B、8

C、9

D、24

【答案】:答案:C

解析:思路一:4-12=-812-8=48-10=-210-9=1,其中,-8、4、-2、1等比。思路二:(4+12)/2=8(12+8)/2=10(10+8)/2=/=9。故選C。56、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續(xù)的奇數列,另一部分2、3、4、5是連續(xù)的自然數,即所填數字為93+6=735。故選D。57、張大伯賣白菜,開始定價是每千克5角錢,一點都賣不出去,后來每千克降低了幾分錢,全部白菜很快賣了出去,一共收入22.26元,則每千克降低了幾分錢?

A、3

B、4

C、6

D、8

【答案】:答案:D

解析:代入法,只有降8分時收入才能被價格整除。(2226=2×3×7×53=42×53)。故選D。58、145,120,101,80,65,()

A、48

B、49

C、50

D、51

【答案】:答案:A

解析:145=122+1,120=112-1,101=102+1,80=92-1,65=82+1,奇數項,每項等于首項為12,公差為-2的平方加1;偶數項,每項等于首項為11,公差為-2的平方減1,即所填數字為72-1=48。故選A。59、以正方形的4個頂點和中心點中的任意三點為頂點可以構成幾種面積不等的三角形?()

A、1

B、2

C、3

D、4

【答案】:答案:B

解析:若3個點都從正方形的4個頂點中取,則得到的三角形面積是正方形面積的一半:若3個點中有一個是中心點,其他2個是正方形的頂點,則得到的三角形面積是正方形面積的四分之一。因此,可以構成2種面積不等的蘭角形。故選B。60、1,10,2,(),3,8,4,7,5,6

A、6

B、7

C、8

D、9

【答案】:答案:D

解析:間隔組合數列,奇數項1、2、3、4、5和偶數項10、(9)、8、7、6都為等差數列。故選D。61、0,6,24,60,()

A、70

B、80

C、100

D、120

【答案】:答案:D

解析:0=0×1×2,6=1×2×3,24=2×3×4,60=3×4×5,()=4×5×6=120。另解,0=13-1,6=23-2,24=33-3,60=43-4,()=53-5=120。故選D。62、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續(xù)自然數。故選A。63、102,314,526,()

A、624

B、738

C、809

D、849

【答案】:答案:B

解析:314-102=212,526-314=212。后一項-前一項=212,即所填數字為536+212=738。故選B。64、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()

A、7個

B、8個

C、9個

D、10個

【答案】:答案:C

解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。65、1,1,2,6,30,240,()

A、1200

B、1800

C、2400

D、3120

【答案】:答案:D

解析:1*2=2,2*3=6,6*5=30,30*8=240,后面除以前面的商是斐波那契數列2、3、5、8,即后一項是前面2項的和,8后面是13,240后面應該是240*13=3120。故選D。66、某木場有甲,乙,丙三位木匠師傅生產桌椅,甲每天能生產12張書桌或13把椅子;乙每天能生產9張書桌或12把椅子,丙每天能生產9張書桌或15把椅子,現在書桌和椅子要配套生產(每套一張書桌一把椅子),則7天內這三位師傅最多可以生產桌椅()套。

A、116

B、129

C、132

D、142

【答案】:答案:B

解析:將甲、乙、丙三位木匠師傅生產桌椅的效率列表如下,分析可知,甲生產書桌的相對效率最高,丙生產椅子的相對效率最高,則安排甲7天全部生產書桌,丙7天全部生產椅子,乙協(xié)助甲丙完成。甲7天可生產桌子12×7=84(張),丙7天可生產椅子15×7=105(把)。設乙生產書桌x天,則生產椅子(7-x)天,當生產的書桌數與椅子數相同時,獲得套數最多,可列方程84+9x=105+12×(7-x),解得x=5,則乙可生產書桌9×5=45(張)。故7天內這三位師傅最多可以生產桌椅84+45=129(套)。故選B。67、-7,0,1,2,9,()

A、42

B、18

C、24

D、28

【答案】:答案:D

解析:-7=(-2)3+1;0=(-1)3+1;1=03+1;2=13+1;9=23+1;28=33+1。故選D。68、一只天平有7克、2克砝碼各一個,如果需要將140克的鹽分成50克、90克各一份,至少要稱幾次?()

A、六

B、五

C、四

D、三

【答案】:答案:D

解析:第一步,用天平將140g分成兩份,每份70g;第二步,將其中的一份70g,平均分成兩份35g;第三步,將砝碼分別放在天平的兩邊,將35g鹽放在天平兩邊至平衡,則每邊為(35+7+2)÷2=22g,則砝碼為2g的一邊,鹽就為20g,將其與第一步剩下的70g鹽混合,得到90g,剩下的就是50g。即一共稱了三次。故選D。69、有一支參加閱兵的隊伍正在進行訓練,這支隊伍的人數是5的倍數且不少于1000人,如果按每橫排4人編隊,最后少3人,如果按每橫排3人編隊,最后少2人;如果按每橫排2人編隊,最后少1人。請問,這支隊伍最少有多少人?()

A、1045

B、1125

C、1235

D、1345

【答案】:答案:A

解析:問最少,由小到大代入選項:代入A選項,(1045+3)能被4整除;(1045+2)能被3整除;(1045+1)能被2整除,滿足題意。故選A。70、25與一個三位數相乘個位是0,與這個三位數相加有且只有一次進位,像這樣的三位數總共有多少個? ()

A、48

B、126

C、174

D、180

【答案】:答案:C

解析:因為25與一個三位數相乘個位是0,所以這個三位數個位上的數是0、2、4、6、8。又因為與這個三位數相加有且只有一次進位,所以當個位是0、2、4時,十位必須是8或9,百位是1-8八個數都可以,這種情況有48(8乘2乘3等于48)個數滿足條件;當個位是6或8時,十位可以是0、1、2、3、4、5、6七個數,百位是1-9九個數,這種情況有126(9乘7乘2等于126)個數滿足條件;終上所述一共有174(48+126=174)個,即:像這樣的三位數總共有174個。故選C。71、某樓盤的地下停車位,第一次開盤時平均價格為15萬元/個;第二次開盤時,車位的銷售量增加了一倍、銷售額增加了60%。那么,第二次開盤的車位平均價格為()。

A、10萬元/個

B、11萬元/個

C、12萬元/個

D、13萬元/個

【答案】:答案:C

解析:銷售額=平均價格×銷售量,已知第一次開盤平均價格為15萬元/個,賦銷售量為1,則銷售額為15萬。第二次開盤時,銷售量增加了一倍,即為2,銷售額增加了60%,得銷售額為15×(1+60%)=24(萬元),故第二次開盤平均價格為24÷2=12(萬元/個)。故選C。72、[(9,6),42,(7,7)],[(7,3),40,(6,4)],[(8,2),(),(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,每組中前兩項的差×后兩項的和=中間項。即所填數字為(8-2)×(3+2)=30。故選A。73、2,5,9,19,37,75,()

A、140

B、142

C、146

D、149

【答案】:答案:C

解析:方法一:2×2+1=5,5×2-1=9,9×2+1=19,19×2-1=37,37×2+1=75,奇數項,每項乘以2加上1等于后一項;偶數項,每項乘以2減去1等于后一項,即所填數字為75×2-1=149。方法二:2×2+5=9,5×2+9=19,9×2+19=37,19×2+37=75,第三項=第一項×2+第二項,即所填數字為37×2+75=149。故選C。74、[(9,6)42(7,7)][(7,3)40(6,4)][(8,2)()(3,2)]

A、30

B、32

C、34

D、36

【答案】:答案:A

解析:(9-6)×(7+7)=42,(7-3)×(6+4)=40,(8-2)×(3+2)=(30)。故選A。75、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。76、4,5,9,18,34,()

A、59

B、37

C、46

D、48

【答案】:答案:A

解析:該數列的后項減去前項得到一個平方數列,故空缺處應為34+25=59。故選A。77、7,9,-1,5,()

A、3

B、-3

C、2

D、-1

【答案】:答案:B

解析:7+9=16,9+(-1)=8,(-1)+5=4,5+(-3)=2,其中16,8,4,2等比。故選B。78、2,3,6,15,()

A、25

B、36

C、42

D、64

【答案】:答案:C

解析:相鄰兩項間做差。做差后得到的數為1,3,9;容易觀察出這是一個等比數列,所以做差數列的下一項為27,則答案為15+27=42。故選C。79、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。80、1,1,2,6,24,()

A、11

B、50

C、80

D、120

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數除以前一個數得1,2,3,4,為連續(xù)自然數列,即所填數字為24×5=120。故選D。81、某年的10月里有5個星期六,4個星期日,則這年的10月1日是?()

A、星期一

B、星期二

C、星期三

D、星期四

【答案】:答案:D

解析:10月有31天,因為有5個星期六,4個星期日,所以10月31日是星期六。31=4×7+3,所以10月3日也是星期六,故10月1日是星期四。故選D。82、某人租下一店面準備賣服裝,房租每月1萬元,重新裝修花費10萬元。從租下店面到開始營業(yè)花費3個月時間。開始營業(yè)后第一個月,扣除所有費用后的純利潤為3萬元。如每月純利潤都比上月增加2000元而成本不變,問該店在租下店面后第幾個月內收回投資?()

A、7

B、8

C、9

D、10

【答案】:答案:A

解析:由題意可得租下店面前3個月成本為1×3+10=13(萬元),租下店面第4個月開始營業(yè),營業(yè)后各月獲得的純利潤構成首項為3萬元、公差為0.2萬元的等差數列:3萬元、3.2萬元、3.4萬元、3.6萬元。由3+3.2+3.4+3.6=13.2>13,即第7個月收回投資。故選A。83、甲、乙兩人在一條400米的環(huán)形跑道上從相距200米的位置出發(fā),同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:環(huán)形同點同向出發(fā)每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。84、2,4,10,18,28,(),56

A、32

B、42

C、52

D、54

【答案】:答案:B

解析:因式分解數列。2=1×2,4=1×4,10=2×5,18=3×6,28=4×7,()=?×?,56=7×8,每一項的兩個因子之和分別為3、5、7、9、11、()、15,構成公差為2的等差數列。由此可知,空缺項的兩個因子的和為13,結合選項,只有B項的42=6×7分解后兩個因子的和為13。故選B。85、133/256,125/64,117/16,()

A、109/4

B、103/2

C、109/6

D、115/8

【答案】:答案:A

解析:分子133、125、117、(109)是公差為-8的等差數列,分母256、64、16、(4)是公比為1/4的等比數列。故選A。86、3,30,129,348,()

A、532

B、621

C、656

D、735

【答案】:答案:D

解析:3=13+2、30=33+3、129=53+4、348=73+5,其中底數1、3、5、7構成連續(xù)的奇數列,另一部分2、3、4、5是連續(xù)的自然數,即所填數字為93+6=735。故選D。87、2012年3月份的最后一天是星期六,則2013年3月份的最后一天是()。

A、星期天

B、星期四

C、星期五

D、星期六

【答案】:答案:A

解析:從2012年3月31號到2013年3月31號,一共是365天,365÷7=52周…1天,所以星期六加一天即為星期天。故選A。88、140支社區(qū)足球隊參加全市社區(qū)足球淘汰賽,每一輪都要在未失敗過的球隊中抽簽決定比賽對手,如上一輪未失敗過的球隊是奇數,則有一隊不用比賽直接進人下—輪。問奪冠的球隊至少要參加幾場比賽? ()

A、3

B、4

C、5

D、6

【答案】:答案:B

解析:根據題意,如果是奇數隊的話,有一隊輪空,自動進入下一場。題目問冠軍至少需要參加幾場比賽,為了讓冠軍參加的場次盡可能的少,每次輪空自動進入下一場的都是冠軍。整個比賽過程為:140-70-35-18-9-5-3-2-1,需要進行8輪,有4輪是輪空的。所以冠軍至少需要進行4場比賽。故選B。89、1,2,3,6,12,24,()

A、48

B、45

C、36

D、32

【答案】:答案:A

解析:1+2=3,1+2+3=6,1+2+3+6=12,1+2+3+6+12=24,第N項=第N-1項+…+第一項,即所填數字為1+2+3+6+12+24=48。故選A。90、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。91、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。92、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。93、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小數點之前滿足規(guī)律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。94、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收??;超過5噸不超過10噸的部分按6元/噸收取;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。95、3,2,2,5,17,()

A、24

B、36

C、44

D、56

【答案】:答案:D

解析:依次將相鄰兩個數中后一個數減去前一個數得-1,0,3,12,再次作差得1,3,9,構成公比為3的等比數列,即所填數字為9×3+12+17=56。故選D。96、某制衣廠接受一批服裝訂貨任務,按計劃天數進行生產,如果每天平均生產20套服裝,就比訂貨任務少生產100套;如果每天生產23套服裝,就可超過訂貨任務20套。那么,這批服裝的訂貨任務是多少套?()

A、760

B、1120

C、900

D、850

【答案】:答案:C

解析:由題意每天生產多出3套,總共就會多生產出120,那么計劃的天數為40天,所以這批服裝為20×40+100=900(套)。故選C。97、3,6,11,(),27

A、15

B、18

C、19

D、24

【答案】:答案:B

解析:相鄰兩項后一項減前一項,6-3=3,11-6=5,18-11=7,27-18=9,構成公差為2的等差數列。即所填數字為11+7=18,27-9=18。故選B。98、要將濃度分別為20%和5%的A、B兩種食鹽水混合配成濃度為15%的食鹽水900克,問5%的食鹽水需要多少克?()

A、250

B、285

C、300

D、325

【答案】:答案:C

解析:設需要5%的食鹽水x克,則需要20%的食鹽水(900-x)克;根據混合后濃度為15%,得[x×5%+(900-x)×20%]=900×15%,解得x=300(克)。故選C。99、6,3,5,13,2,63,()

A、-36

B、-37

C、-38

D、-39

【答案】:答案:B

解析:6×3-5=13,3×5-13=2,5×13-2=63,第四項=第一項×第二項-第三項,即所填數字為13×2-63=-37。故選B。100、某班有56名學生,每人都參加了a、b、c、d、e五個興趣班中的一個。已知有27人參加a興趣班,參加b興趣班的人數第二多,參加c、d興趣班的人數相同,e興趣班的參加人數最少,只有6人,問參加b興趣班的學生有多少個?()

A、7個

B、8個

C、9個

D、10個

【答案】:答案:C

解析:設b班人數為x,c、d班的人數均為y,由b班人數第二多,e班人數最少,可知各班人數關系為:27>x>y>6。該班有56名學生,56=27+x+y+y+6,即x+2y=23,其中2y是偶數,23為奇數,則x為奇數,排除B、D。代入A選項,當x=7時,y=8,則x<Y,不符合題意,排除。故選C。101、商店購入一百多件A款服裝,其單件進價為整數元,總進價為1萬元,已知單件B款服裝的定價為其進價的1.6倍,其進價為A款服裝的75%,銷售每件B款服裝的利潤為A款服裝的一半,某日商店以定價銷售A款服裝的總銷售額超過2500元,問當天至少銷售了多少件A款服裝?()

A、13

B、15

C、17

D、19

【答案】:答案:C

解析:推出A款服裝有125件,進價為80元,B款服裝進價為80×0.75=60(元),B款服裝定價為60×1.6=96(元),利潤為96-60=36(元),A款服裝利潤為36×2=72(元),所以A款服裝售價為80+72=152(元)。銷售數量至少為2500÷152=16.4,取整為17件。故選C。102、學校舉行象棋比賽,共有甲、乙、丙、丁4支隊。規(guī)定每支隊都要和另外3支隊各比賽一場,勝得3分,敗得0分,平雙方各得1分。已知:(1)這4支隊三場比賽的總得分為4個連續(xù)的奇數;(2)乙隊總得分排在第一;(3)丁隊恰有兩場同對方打成平局,其中有一場是與丙隊打成平局的。問丙隊得幾分?()

A、1分

B、3分

C、5分

D、7分

【答案】:答案:A

解析:每支隊均比賽3場,因此最高分不超過9分,又知總得分為4個連續(xù)的奇數,因此得分有3、5、7、9和1、3、5、7兩種情況。若最高分為9分,那么排名第二的隊最多贏現場得6分,不可能得7分,不符合題意,故乙隊得7分,即2勝1平。由條件(3)知,丁隊恰有兩場同對方打成平局,積分2分,為偶數,故另一場只能為勝,共得5分。由此可知,丙隊得分為1或3分。由于丁隊一場未敗,故乙隊獲勝的兩場只能是甲隊和丙隊。目前已知丙隊戰(zhàn)兩場,一負一平,積1分,另一場無論是勝或平,積分均為偶數,故這一場只能為負,總積分為1分。故選A。103、某出版社新招了10名英文、法文和日文方向的外文編輯,其中既會英文又會日文的小李是唯一掌握一種以上外語的人。在這10人中,會法文的比會英文的多4人,是會日文人數的兩倍。問只會英文的有幾人?()

A、2

B、0

C、3

D、1

【答案】:答案:D

解析:設會日文的有x人,則會法文的有2x人,會英文的有(2x-4)人,由于小李既會英文也會日文,被統(tǒng)計兩次,故10人統(tǒng)計了11人次。根據人次總數,得方程11=x+2x+2x-4,解得x=3,則會英文的人為2x-4=2(人),因小李既會英文又會日文,所以只會英文的只有2-1=1(人),故選D。104、2.08,8.16,24.32,64.64,()

A、160.28

B、124.28

C、160.56

D、124.56

【答案】:答案:A

解析:小數點之前滿足規(guī)律:(8-2)×4=24,(24-8)×4=64,(64-24)×4=160,排除B.D兩項。小數點之后構成等比數列8,16,32,64,128,小數點之后的數超過三位取后兩位,所以未知項是160.28。故選A。105、A地到B地的道路是下坡路。小周早上6:00從A地出發(fā)勻速騎車前往B地,7:00時到達兩地正中間的C地。到達B地后,小周立即勻速騎車返回,在10:00時又途經C地。此后小周的速度在此前速度的基礎上增加1米/秒。最后在11:30回到A地。問A、B兩地間的距離在以下哪個范圍內?

A.40~50公里

B.大于50公里

C.小于30公里

D.30~40公里

【答案】:答案:A

解析:設小周下坡速度為,上坡速度為。根據條件分析可列下表:在上坡階段B→C=C→A,可得,解得=3m/s,根據1m/s=3600m/h,因此。故正確答案為A。106、0,3,18,33,68,95,()

A、145

B、148

C、150

D、153

【答案】:答案:C

解析:原數列寫為0=0×1,3=1×3,18=2×9,33=3×11,68=4×17,95=5×19,其中1,3,9,11,17,19構成的數列奇數項是等差數列,偶數項也是等差數列。故空缺處數字為6×25=150。故選C。107、(1296-18)÷36的值是()。

A、20

B、35.5

C、19

D、36

【答案】:答案:B

解析:原式可轉化為1296÷36-18÷36=36-0.5=35.5。故選B。108、1,6,5,7,2,8,6,9,()

A、1

B、2

C、3

D、4

【答案】:答案:C

解析:本題為隔項遞推數列,存在關系:第三項=第二項-第一項,第五項=第四項-第三項,……因此未知項為9-6=3。故選C。109、44,52,59,73,83,94,()

A、107

B、101

C、105

D、113

【答案】:答案:A

解析:每相鄰的兩項作差,得到8,7,14,10,11,每一個差是原數列中前一項個位數與十位數字的和,即8=4+4,7=5+2,14=5+9,10=7+3,11=8+3,所以9+4=13,所以未知項為13+94=107。故選A。110、1806,1510,1214,918,()

A、724

B、722

C、624

D、622

【答案】:答案:D

解析:百位和千位看做一個數列,是18,15,12,9,構成公差為-3的等差數列,所以下一項應為6;十位和個位看做一個數列,是06,10,14,18,構成公差為4的等差數列,所以下一項應為22。故未知項應為622。故選D。111、1,2,0,3,-1,4,()

A、-2

B、0

C、5

D、6

【答案】:答案:A

解析:奇數項1、0、-1、(-2)是公差為-1的等差數列;偶數項2、3、4是連續(xù)自然數。故選A。112、某校二年級全部共3個班的學生排隊.每排4人,5人或6人,最后一排都只有2人.這個學校二年級有()名學生。

A、120

B、122

C、121

D、123

【答案】:答案:B

解析:由題意知,學生數除以4、5、6均余2,由代入法可以得到,只有B項滿足條件。113、甲、乙兩人在一條400米的環(huán)形跑道上從相距200米的位置出發(fā),同向勻速跑步。當甲第三次追上乙的時候,乙跑了2000米。問甲的速度是乙的多少倍?()

A、1.2

B、1.5

C、1.6

D、2.0

【答案】:答案:B

解析:環(huán)形同點同向出發(fā)每追上一次,甲比乙多跑一圈。第一次由于是不同起點,甲比乙多跑原來的差距200米;之后兩次追上都多跑400米,甲一共比乙多跑200+400×2=1000(米)。乙跑了2000米,甲跑了3000米,時間相同,則速度比與路程比也相同,可知甲的速度是乙的3000÷2000=1.5倍。故選B。114、2,3,6,18,108,()

A、1944

B、1620

C、1296

D、1728

【答案】:答案:A

解析:2×3=6,3×6=18,6×18=108,……前兩項相乘等于下一項,則所求項為18×108,尾數為4。故選A。115、0,1,3,10,()

A、101

B、102

C、103

D、104

【答案】:答案:B

解析:思路一:0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102。思路二:0(第一項)2+1=1(第二項)12+2=332+1=10102+2=102,其中所加的數呈1,2,1,2規(guī)律。思路三:各項除以3,取余數=>0,1,0,1,0,奇數項都能被3整除,偶數項除3余1。故選B。116、一個四邊形廣場,它的四邊長分別是60米、72米、96米、84米,現在四邊上植樹,四角需種樹,而且每兩棵樹的間隔相等,那么,至少要種多少棵樹?()

A、22

B、25

C、26

D、30

【答案】:答案:C

解析:根據四角需種樹,且每兩棵樹的間隔相等可知,間隔距離應為四邊邊長的公約數;要使棵樹至少,則間隔距離要盡量最大,公約數最大為12(60、72、96、84的最大公約數)。故棵數=段數=長度÷間距=(60+72+84+96)÷12=26(棵)。故選C。117、a除以5余1,b除以5余4,如果3a>b,那么3a-b除以5余幾?()

A、1

B、2

C、3

D、4

【答案】:答案:D

解析:a除以5余1,假設a=6;b除以5余4,假設b=9,符合3a>b。故3a-b=18-9=9,9除以5余4。故選D。118、一艘輪船從甲地到乙地每小時航行30千米,然后按原路返回,若想往返的平均速度為每小時40千米,則返回時每小時航行()千米。

A、80

B、75

C、60

D、96

【答案】:答案:C

解析:設甲乙兩地的距離為1,則輪船從甲地到乙地所用的時間為1/30,如果往返的平均速度為40千米,則往返一次所用的時間為2/40,那么從乙地返回甲地所用時間為2/40-1/30=1/60,所以返回時的速度為每小時1/(1/60)=60千米。故選C。119、小孫的口袋里有四顆糖,一顆巧克力味的,一顆蘋果味的,兩顆牛奶味的。小孫任意從口袋里取出兩顆糖,他看了看后說,其中一顆是牛奶味的。問小孫取出的另一顆糖也是牛奶味的可能性(概率)是多少?()

A、1/3

B、1/4

C、1/5

D、1/6

【答案】:答案:C

解析:兩顆都是牛奶味的糖只有一種情況,而其中至少一顆是牛奶味的糖共有5種情況:(牛奶味1、蘋果味),(牛奶味1、巧克力味),(牛奶味2、蘋果味),(牛奶味2、巧克力味),(牛奶味1、牛奶味2)。因此取出的另一顆糖也是牛奶味的概率為1/5。故選C。120、甲乙丙三人參加一項測試,三人的平均分為80,甲乙兩人的平均分為75,乙丙兩人的平均分為80,那么甲丙兩人的平均分為()。

A、70

B、75

C、80

D、85

【答案】:答案:D

解析:甲乙丙、甲乙的平均分分別為80、75,可知丙的分數大于80分;甲乙丙、乙丙的平均分分別為80、80,可知甲的分數為80分。則甲丙平均分大于80分。故選D。121、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。122、從A地到B地為上坡路。自行車選手從A地出發(fā)按A-B-A-B的路線行進,全程平均速度為從B地出發(fā),按B-A-B-A的路線行進的全程平均速度的4/5,如自行車選手在上坡路與下坡路上分別以固定速度勻速騎行,問他上坡的速度是下坡速度的()。

A、1/2

B、1/3

C、2/3

D、3/5

【答案】:答案:A

解析:S=VT,當S一定的時候,VT成反比,兩次行程的平均速度之比是4:5,故兩次行程所用時間之比T1:T2=5:4。設一個下坡的時間是1,一個上坡的時間是n,則上坡速度是下坡速度的1/n。A-B-A-B的過程經歷了2個上坡和1個下坡,則T1=2n+1;B-A-B-A的過程經歷了2個下坡和1個上坡,則T2=2+n,而T1:T2=5:4=(2n+1):(2+n),解得n=2。故選A。123、將17拆分成若干個自然數的和,這些自然數的乘積的最大值是多少?()

A、256

B、486

C、556

D、376

【答案】:答案:B

解析:若把一個整數拆分成若干個自然數之和,有大于4的數,則把大于4的這個數再分成一個2與另一個大于2的自然數之和,則這個2與大于2的這個數的乘積肯定比這個大于4的數更大。另外,如果拆分的數中含有1,則對乘積增大沒有貢獻,因此不能考慮。因此,要使加數之積最大,加數只能是2和3。但是,若加數中含有3個2,則不如將它換成2個3。因為2×2×2=8,而3×3=9。故拆分出的自然數中,至多含有兩個2,而其余都是3。故將17拆分為17=3+3+3+3+3+2時,其乘積最大,最大值為243×2=486。故選B。124、在某城市中,有60%的家庭訂閱某種日報,有85%的家庭有電視機。假定這兩個事件是獨立的,今隨機抽出一個家庭,所抽家庭既訂閱該種日報又有電視機的概率是()。

A、0.09

B、0.25

C、0.36

D、0.51

【答案】:答案:D

解析:由于是獨立重復試驗,故既訂閱該中日報又有電視機的概率是60%×85%=51%。故選D。125、5,7,4,6,4,6,()

A、4

B、5

C、6

D、7

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得2,-3,2,-2,2,為奇數項是2偶數項為公差為1的等差數列,即所填數字為6+(-1)=5。故選B。126、7,9,-1,5,()

A、3

B、-3

C、2

D、-2

【答案】:答案:B

解析:第三項=(第一項-第二項)/2=>-1=(7-9)/25=(9-(-1))/2-3=(-1-5)/2。故選B。127、-56,25,-2,7,4,()

A、3

B、-12

C、-24

D、5

【答案】:答案:D

解析:-56-25=-3×[25-(-2)],25-(-2)=-3×(-2-7),-2-7=-3×(7-4),第(N-1)項-第N項=-3[第N項-第(N+1)項](N≥2),即所填數字為4-=5。故選D。128、2,12,40,112,()

A、224

B、232

C、288

D、296

【答案】:答案:C

解析:原數列可以寫成1×2,3×4,5×8,7×16,前一個乘數數列為1,3,5,7,是等差數列,下一項是9,后一個乘數數列為2,4,8,16,是等比數列,下一項是32,所以原數列空缺項為9×32=288。故選C。129、某城市居民用水價格為:每戶每月不超過5噸的部分按4元/噸收?。怀^5噸不超過10噸的部分按6元/噸收??;超過10噸的部分按8元/噸收取。某戶居民兩個月共交水費108元,則該戶居民這兩個月用水總量最多為多少噸?()

A、17.25

B、21

C、21.33

D、24

【答案】:答案:B

解析:總費用一定,要使兩個月的用水總量最多,需盡量使用低價水。先將兩個月4元/噸的額度用完,花費4×5×2=40(元);再將6元/噸的額度用完,花費6×5×2=60(元)。由兩個月共交水費108元可知,還剩108-40-60=8(元),可購買1噸單價為8元/噸的水。該戶居民這兩個月用水總量最多為5×2+5×2+1=21(噸)。故選B。130、甲種酒精有4升,乙種酒精有6升,混合成的酒精含酒精62%;如果兩種酒精溶液一樣多,混合成的酒精溶液含酒精61%,乙種酒精溶液含有純酒精百分之幾?()

A、56

B、66

C、58

D、64

【答案】:答案:B

解析:設甲種酒精濃度x%,乙種酒精濃度y%。那么,4×x%+6×y%=(4+6)×62%,x%+y%=2×61%,得x=56,y=66,即乙種酒精濃度為66%。故選B。131、一條馬路的兩邊各立著10盞電燈,現在為了節(jié)省用電,決定每邊關掉3盞,但為了安全,道路起點和終點兩邊的燈必須是亮的,而且任意一邊不能連續(xù)關掉兩盞。問總共有多少種方案?()

A、120

B、320

C、400

D、420

【答案】:答案:C

解析:每一邊7盞亮著的燈形成6個空位,把3盞熄滅的燈插進去,則共有=400種方案。故選C。132、甲乙兩人需托運行李。托運收費標準為10kg以下6元/kg,超出10kg部分每公斤收費標準略低一些。已知甲乙兩人托運費分別為109.5元、78元,甲的行李比乙重了50%。那么,超出10kg部分每公斤收費標準比10kg以內的低了()元。

A.1.5

B.2.5

C.3.5

D.4.5

【答案】:答案:A

解析:解析一:分段計費問題,設乙的行李超出的重量為x,即乙的行李總重量為10+x,則甲的行李重量為1.5×(10+x)。所以計算超出部分的重量為1.5×(10+x)-10=5+1.5x,超出金額為49.5元,所以按照比例,乙的行李超出了重量x,超出金額為18元,得到,解得x=4,所以超出部分單價為18÷4=4.5元。所以超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5元。解析二:盈虧思路,由于甲的行李重量比乙的多50%,所以分段看,乙超出部分為18元,所以對應的多50%的重量,應該是27元。則從甲超出的49.5元中扣除27元,還剩22.5元,這個錢數應該對應著10公斤的50%,即5公斤22.5元。所以每公斤超出部分為4.5元,超出10公斤部分每公斤收費標準比10公斤以內的低了6-4.5=1.5,得解。故正確答案為A。速解:靠常識解決,題目中說“超出10公斤部分每公斤收費標準略低一些?!彼赃x稍微低一點的133、A、B、C三個試管中各盛有10克、20克、30克水,把某種濃度的鹽水10克倒入A中,充分混合后從A中取出10克倒入B中,再充分混合后從B中取出10克倒入C中,最后得到C中鹽水的濃度為0.5%。則開始倒入試管A中的鹽水濃度是多少?()

A、12%

B、15%

C、18%

D、20%

【答案】:答案:A

解析:C中含鹽量為(30+10)×0.5%=0.2克,即從B中取出的10克中含鹽0.2克,則B的濃度為0.2÷10=2%,進而求出B中含鹽量為(20+10)×2%=0.6克,即從A中取出的10克中含鹽0.6克,可得A的濃度為0.6÷10=6%,進一步得出A中含鹽量為(10+10)×6%=1.2克,故開始倒入A中的鹽水濃度為1.2÷10=12%。故選A。134、8,4,8,10,14,()

A、22

B、20

C、19

D、24

【答案】:答案:C

解析:題干數列為遞推數列,規(guī)律為:8÷2+4=8,4÷2+8=10,8÷2+10=14,即第一項÷2+第二項=第三項,因此未知項為10÷2+14=19。故選C。135、接受采訪的100個大學生中,88人有手機,76人有電腦,其中有手機沒電腦的共15人,則這100個學生中有電腦但沒手機的共有多少人?()

A、25

B、15

C、5

D、3

【答案】:答案:D

解析:根據有手機沒電腦共15人,可得既有手機又有電腦(①部分)的人數為88-15=73人,則有電腦但沒手機(②部分)的人數為76-73=3人。故選D。136、2,4,12,32,88,()

A、140

B、180

C、220

D、240

【答案】:答案:D

解析:12=2×(2+4),32=2×(4+12),88=2×(32+12),第三項=2×(第一項+第二項),即所填數字為2×(88+32)=240。故選D。137、8,9,18,23,30,()

A、33

B、36

C、41

D、48

【答案】:答案:B

解析:依次將相鄰兩個數中后一個數減去前一個數得1,9,5,7,再次作差得8,-4,2,構成公比為-0.5的等比數列,即所填數字為2×(-0.5)+7+30=36。故選B。138、某實驗室模擬酸雨,現有濃度為30%和10%的兩種鹽酸溶液,實驗需要將二者混合配置出濃度為16%的鹽酸700克備用,那么30%的鹽酸需要多少克?()

A、180

B、190

C、200

D、210

【答案】:答案:D

解析:設需要30%的鹽酸溶液x克,由二者混合后的鹽酸700克可知,需要10%的鹽酸(700-x)克。則30%x+10%×(700-x)=16%×700,解得x=210。故選D。139、130,68,30,(),2

A、11

B、12

C、10

D、9

【答案】:答案:C

解析:130=53+5,68=43+4,30=33+3,10=23+2,2=13+1。故選C。140、某種茶葉

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論