江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省揚州市江大橋高級中學2025屆數(shù)學高一下期末學業(yè)質量監(jiān)測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知圓,過點作圓的最長弦和最短弦,則直線,的斜率之和為A. B. C.1 D.2.高一某班男生36人,女生24人,現(xiàn)用分層抽樣的方法抽取一個容量為的樣本,若抽出的女生為12人,則的值為()A.18 B.20 C.30 D.363.不等式x+5(x-1)A.[-3,1C.[124.已知等比數(shù)列中,,數(shù)列是等差數(shù)列,且,則()A.3 B.6 C.7 D.85.若,則下列不等式成立的是()A. B.C. D.6.若實數(shù)滿足,則的最小值為()A.4 B.8 C.16 D.327.的內角的對邊分別為,分別根據(jù)下列條件解三角形,其中有兩解的是()A.B.C.D.8.在中,,,,則的面積是()A. B. C.或 D.或9.已知向量,,若,則()A. B. C. D.10.設,,均為正實數(shù),則三個數(shù),,()A.都大于2 B.都小于2C.至少有一個不大于2 D.至少有一個不小于2二、填空題:本大題共6小題,每小題5分,共30分。11.已知球的表面積為4,則該球的體積為________.12.若數(shù)列滿足,,則的最小值為__________________.13.向量滿足:,與的夾角為,則=_____________;14.在△ABC中,若∠A=120°,AB=5,BC=7,則△ABC的面積S=_____.15.把一枚質地均勻的硬幣先后拋擲兩次,兩次都是正面向上的概率為________.16.按照如圖所示的程序框圖,若輸入的x值依次為,0,1,運行后,輸出的y值依次為,,,則________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角,,所對的邊為,,,向量與向量共線.(1)若,求的值;(2)若為邊上的一點,且,若為的角平分線,求的取值范圍.18.在平面直角坐標系中,已知點,,.(Ⅰ)求的坐標及;(Ⅱ)當實數(shù)為何值時,.19.如圖,在四棱錐中,底面為矩形,為等邊三角形,且平面平面.為的中點,為的中點,過點,,的平面交于.(1)求證:平面;(2)若時,求二面角的余弦值.20.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.21.設全集為實數(shù)集,,,.(1)若,求實數(shù)的取值范圍;(2)若,且,求實數(shù)的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據(jù)圓的幾何性質可得最長弦是直徑,最短弦和直徑垂直,故可計算斜率,并求和.【詳解】由題意得,直線經過點和圓的圓心弦長最長,則直線的斜率為,由題意可得直線與直線互相垂直時弦長最短,則直線的斜率為,故直線,的斜率之和為.【點睛】本題考查了兩直線垂直的斜率關系,以及圓內部的幾何性質,屬于簡單題型.2、C【解析】

根據(jù)分層抽樣等比例抽樣的特點,進行計算即可.【詳解】根據(jù)題意,可得,解得.故選:C.【點睛】本題考查分層抽樣的等比例抽取的性質,屬基礎題.3、D【解析】試題分析:x+5(x-1)2≥2?x+5≥2(x-1)2且x≠1考點:分式不等式解法4、D【解析】

由等比數(shù)列的性質求得,再由等差數(shù)列的性質可得結果.【詳解】因為等比數(shù)列,且,解得,數(shù)列是等差數(shù)列,則,故選:D.【點睛】本題主要考查等比數(shù)列與等差數(shù)列的下標性質,屬于基礎題.解等差數(shù)列問題要注意應用等差數(shù)列的性質().5、B【解析】

利用不等式的性質,進行判斷即可.【詳解】因為,故由均值不等式可知:;因為,故;因為,故;綜上所述:.故選:B.【點睛】本題考查均值不等式及利用不等式性質比較大小.6、B【解析】

由可以得到,利用基本不等式可求最小值.【詳解】因為,故,因為,故,故,當且僅當時等號成立,故的最小值為8,故選B.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.7、D【解析】

運用正弦定理公式,可以求出另一邊的對角正弦值,最后還要根據(jù)三角形的特點:“大角對大邊”進行合理排除.【詳解】A.,由所以不存在這樣的三角形.B.,由且所以只有一個角BC.中,同理也只有一個三角形.D.中此時,所以出現(xiàn)兩個角符合題意,即存在兩個三角形.所以選擇D【點睛】在直接用正弦定理求另外一角中,求出后,記得一定要去判斷是否會出現(xiàn)兩個角.8、C【解析】

先根據(jù)正弦定理求出角,從而求出角,再根據(jù)三角形的面積公式進行求解即可.【詳解】解:由,,,根據(jù)正弦定理得:,為三角形的內角,或,或在中,由,,或則面積或.故選C.【點睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關鍵,屬于中檔題.9、B【解析】

∵,∴.∴,即,∴,,故選B.【考點定位】向量的坐標運算10、D【解析】

由題意得,當且僅當時,等號成立,所以至少有一個不小于,故選D.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

先根據(jù)球的表面積公式求出半徑,再根據(jù)體積公式求解.【詳解】設球半徑為,則,解得,所以【點睛】本題考查球的面積、體積計算,屬于基礎題.12、【解析】

由題又,故考慮用累加法求通項公式,再分析的最小值.【詳解】,故,當且僅當時成立.又為正整數(shù),且,故考查當時.當時,當時,因為,故當時,取最小值為.故答案為:.【點睛】本題主要考查累加法,求最小值時先用基本不等式,發(fā)現(xiàn)不滿足“三相等”,故考慮與相等時的取值最近的兩個正整數(shù).13、【解析】

根據(jù)模的計算公式可直接求解.【詳解】故填:.【點睛】本題考查了平面向量模的求法,屬于基礎題型.14、【解析】

用余弦定理求出邊的值,再用面積公式求面積即可.【詳解】解:據(jù)題設條件由余弦定理得,即,即解得,故的面積,故答案為:.【點睛】本題主要考查余弦定理解三角形,考查三角形的面積公式,屬于基礎題.15、【解析】

把一枚質地均勻的硬幣先后拋擲兩次,利用列舉法求出基本事件有4個,由此能求出兩次都是正面向上的概率.【詳解】把一枚質地均勻的硬幣先后拋擲兩次,基本事件有4個,分別為:正正,正反,反正,反反,兩次都是正面向上的概率為.故答案為:.【點睛】本題考查古典概型的概率計算,求解時注意列舉法的應用,即列舉出所有等可能結果.16、5【解析】

根據(jù)程序框圖依次計算出、、后即可得解.【詳解】由程序框圖可知,;,;,.所以.故答案為:.【點睛】本題考查了程序框圖的應用,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)32;(2)【解析】

由兩向量坐標以及向量共線,結合正弦定理,化簡可得(1)由,,代入原式化簡,即可得到答案;(2)在和在中,利用正弦定理,化簡可得,,代入原式,化簡即可得到,利用三角形的內角范圍結合三角函數(shù)的值域,即可求出的取值范圍.【詳解】向量與向量共線所以,由正弦定理得:.即,由于在中,,則,所以,由于,則.(1),.(2)因為,為的角平分線,所以,在中,,因為,所以,所以在中,,因為,所以,所以,則,因為,所以,所以,即的取值范圍為.【點睛】本題主要考查向量共線、正弦定理、二倍角公式、三角函數(shù)的值域等知識,考查學生轉化與求解能力,考查學生基本的計算能力,有一定綜合性.18、(Ⅰ),;(Ⅱ)【解析】

(Ⅰ)根據(jù)點,的坐標即可求出,從而可求出;(Ⅱ)可以求出,根據(jù)即可得出,解出即可.【詳解】(Ⅰ)∵,,∴∴(Ⅱ)∵,∴.∵∴,∴【點睛】考查根據(jù)點的坐標求向量的坐標的方法,根據(jù)向量的坐標求向量長度的方法,以及平行向量的坐標關系.19、(1)證明見解析;(2)【解析】

(1)首先證明平面,由平面平面,可說明,由此可得四邊形為平行四邊形,即可證明平面;(2)延長交于點,過點作交直線于點,則即為二面角的平面角,求出的余弦值即可得到答案.【詳解】(1)∵為矩形∴,平面,平面∴平面.又因為平面平面,∴.為中點,為中點,所以平行且等于,即四邊形為平行四邊形所以,平面,平面所以平面(2)不妨設,.因為為中點,為等邊三角形,所以,,且∵,所以有平面,故因為平面平面∴平面,又,∴平面,則延長交于點,過點作交直線于點,由于平行且等于,所以為中點,,由于,,,所以平面,則,所以即為二面角的平面角在中,,,所以,所以.【點睛】本題考查線面平行的證明,以及二面角的余弦值的求法,考查學生空間想象能力,計算能力,由一定綜合性.20、(1);(2).【解析】

(1)直接利用余弦定理,即可得到本題答案;(2)由四邊形ABCD的面積=,得四邊形ABCD的面積,求S的最大值即可得到本題答案.【詳解】(1)當時,在中,由余弦定理得,設(),則,即,解得,所以;(2)的面積為,在中,由余弦定理得,所以,的面積為

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論