版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
湖北省黃岡市浠水縣實驗高級中學2024年高一下數(shù)學期末達標檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數(shù)的最大值為A.4 B.5 C.6 D.72.已知各項為正數(shù)的等比數(shù)列中,,,則公比q=A.4 B.3 C.2 D.3.在中,角的對邊分別為,,且邊,則面積的最大值為()A. B. C. D.4.在等差數(shù)列中,,則數(shù)列前項和取最大值時,的值等于()A.12 B.11 C.10 D.95.用斜二測畫法畫一個邊長為2的正三角形的直觀圖,則直觀圖的面積是:A. B. C. D.6.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積等于()A.π B.πC.16π D.32π7.直線與平行,則的值為()A. B.或 C.0 D.-2或08.方程表示的曲線是()A.一個圓 B.兩個圓 C.半個圓 D.兩個半圓9.如圖,一個邊長為的正方形里有一個月牙形的圖案,為了估算這個月牙形圖案的面積,向這個正方形里隨機投入了粒芝麻,經(jīng)過統(tǒng)計,落在月牙形圖案內(nèi)的芝麻有粒,則這個月牙圖案的面積約為()A. B. C. D.10.已知等差數(shù)列的前項和為,,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______.12.不等式x(2x﹣1)<0的解集是_____.13.已知向量,則___________.14.200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方法,按1~200編號,分為40組,分別為1~5,6~10,…,196~200,若第5組抽取號碼為22,則第8組抽取號碼為________.若采用分層抽樣,40歲以下年齡段應抽取________人.15.從甲、乙、丙、丁四個學生中任選兩人到一個單位實習,余下的兩人到另一單位實習,則甲、乙兩人不在同一單位實習的概率為________.16.____________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.的內(nèi)角A,B,C的對邊分別為a,b,c,已知(1)求A;(2)若A為銳角,,的面積為,求的周長.18.已知函數(shù).(1)求函數(shù)的最小正周期;(2)若函數(shù)在的最大值為2,求實數(shù)的值.19.假設關于某設備的使用年限x和支出的維修費y(萬元)有如下表的統(tǒng)計資料(1)畫出數(shù)據(jù)的散點圖,并判斷y與x是否呈線性相關關系(2)若y與x呈線性相關關系,求線性回歸方程的回歸系數(shù),(3)估計使用年限為10年時,維修費用是多少?參考公式及相關數(shù)據(jù):20.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.21.在直角坐標系中,點,圓的圓心為,半徑為2.(Ⅰ)若,直線經(jīng)過點交圓于、兩點,且,求直線的方程;(Ⅱ)若圓上存在點滿足,求實數(shù)的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:因為,而,所以當時,取得最大值5,選B.【考點】正弦函數(shù)的性質、二次函數(shù)的性質【名師點睛】求解本題易出現(xiàn)的錯誤是認為當時,函數(shù)取得最大值.2、C【解析】
由,利用等比數(shù)列的性質,結合各項為正數(shù)求出,從而可得結果.【詳解】,,,,故選C.【點睛】本題主要考查等比數(shù)列的性質,以及等比數(shù)列基本量運算,意在考查靈活運用所學知識解決問題的能力,屬于簡單題.3、D【解析】
由已知利用同角三角函數(shù)基本關系式可求,根據(jù)余弦定理,基本不等式可求的最大值,進而利用三角形面積公式即可求解.【詳解】解:,可解得:,由余弦定理,可得,即,當且僅當時成立.等號當時成立.故選D.【點睛】本題主要考查了余弦定理,三角形面積公式的應用,屬于基本知識的考查.4、C【解析】試題分析:最大,考點:數(shù)列單調性點評:求解本題的關鍵是由已知得到數(shù)列是遞減數(shù)列,進而轉化為尋找最小的正數(shù)項5、C【解析】分析:先根據(jù)直觀圖畫法得底不變,為2,再研究高,最后根據(jù)三角形面積公式求結果.詳解:因為根據(jù)直觀圖畫法得底不變,為2,高為,所以直觀圖的面積是選C.點睛:本題考查直觀圖畫法,考查基本求解能力.6、B【解析】
作軸截面,圓錐的軸截面是等腰三角形,外接球的截面是圓為球的大圓是的外接圓,由圖可得球的半徑與圓錐的關系.【詳解】如圖,作軸截面,圓錐的軸截面是等腰三角形,的外接圓是球的大圓,設該圓錐的外接球的半徑為R,依題意得,R2=(3-R)2+()2,解得R=2,所以所求球的體積V=πR3=π×23=π,故選B.【點睛】本題考查球的體積,關鍵是確定圓錐的外接球與圓錐之間的關系,即球半徑與圓錐的高和底面半徑之間的聯(lián)系,而這個聯(lián)系在其軸截面中正好體現(xiàn).7、A【解析】
若直線與平行,則,解出a值后,驗證兩條直線是否重合,可得答案.【詳解】若直線與平行,
則,
解得或,
又時,直線與表示同一條直線,
故,
故選A.本題考查的知識點是直線的一般式方程,直線的平行關系,正確理解直線平行的幾何意義是解答的關鍵.8、D【解析】原方程即即或故原方程表示兩個半圓.9、A【解析】
根據(jù)幾何概型直接進行計算即可.【詳解】月牙形圖案的面積約為:本題正確選項:【點睛】本題考查幾何概型的應用,屬于基礎題.10、A【解析】
利用等差數(shù)列下標和的性質可計算得到,由計算可得結果.【詳解】由得:本題正確選項:【點睛】本題考查等差數(shù)列性質的應用,涉及到等差數(shù)列下標和性質和等差中項的性質應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
,則,故答案為.12、【解析】
求出不等式對應方程的實數(shù)根,即可寫出不等式的解集,得到答案.【詳解】由不等式對應方程的實數(shù)根為0和,所以該不等式的解集是.故答案為:.【點睛】本題主要考查了一元二次不等式的解法,其中解答中熟記一元二次不等式的解法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.13、【解析】
根據(jù)向量夾角公式可求出結果.【詳解】.【點睛】本題考查了向量夾角的運算,牢記平面向量的夾角公式是破解問題的關鍵.14、371【解析】
由系統(tǒng)抽樣,編號是等距出現(xiàn)的規(guī)律可得,分層抽樣是按比例抽取人數(shù).【詳解】第8組編號是22+5+5+5=37,分層抽樣,40歲以下抽取的人數(shù)為50%×40=1(人).故答案為:37;1.【點睛】本題考查系統(tǒng)抽樣和分層抽樣,屬于基礎題.15、.【解析】
求得從甲、乙、丙、丁四個學生中任選兩人的總數(shù)和甲、乙兩人不在同一單位實習的方法數(shù),由古典概型的概率計算公式可得所求值.【詳解】解:從甲、乙、丙、丁四個學生中任選兩人的方法數(shù)為種,甲、乙兩人不在同一單位實習的方法數(shù)為種,則甲、乙兩人不在同一單位實習的概率為.故答案為:.【點睛】本題主要考查古典概型的概率計算公式,考查運算能力,屬于基礎題.16、【解析】
在分式的分子和分母中同時除以,然后利用常見數(shù)列的極限可計算出所求極限值.【詳解】由題意得.故答案為:.【點睛】本題考查數(shù)列極限的計算,熟悉一些常見數(shù)列的極限是解題的關鍵,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)或;(2).【解析】
(1)由正弦定理將邊化為對應角的正弦值,即可求出結果;(2)由余弦定理和三角形的面積公式聯(lián)立,即可求出結果.【詳解】(I)由正弦定理得,,即又,或.(II),由余弦定理得,即,而的面積為.的周長為5+.【點睛】本題主要考查正弦定理和余弦定理解三角形,屬于基礎題型.18、(1);(2)或【解析】
(1)根據(jù)二倍角公式進行整理化簡可得,從而可得最小正周期;(2)將通過換元的方式變?yōu)?,;討論對稱軸的具體位置,分別求解最大值,從而建立方程求得的值.【詳解】(1)最小正周期(2)令,則由得①當,即時當時,由,解得(舍去)②當,即時當時,由得,解得或(舍去)③當,即時當時,,由,解得綜上,或【點睛】本題考查正弦型函數(shù)最小正周期的求解、利用二次函數(shù)性質求解與三角函數(shù)有關的值域問題,解題關鍵是通過換元的方式將所求函數(shù)轉化為二次函數(shù)的形式,再利用對稱軸的位置進行討論;易錯點是忽略了換元后自變量的取值范圍.19、(1)見解析;(2),;(3)12.38萬元【解析】
(1)在坐標系中畫出5個離散的點;(2)利用最小二乘法求出,再利用回歸直線過散點圖的中心,求出;(3)將代入(2)中的回歸直線方程,求得.【詳解】(1)散點圖如下:所以從散點圖年,它們具有線性相關關系.(2),,于是有,.(3)回歸直線方程是當時,(萬元),即估計使用年限為10年時,維修費用是萬元.【點睛】本題考查散點圖的作法、最小二乘法求回歸直線方程及利用回歸直線預報當時,的值,考查數(shù)據(jù)處理能力.20、(I);(II)3,.【解析】
(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【詳解】(I)的最小正周期.(Ⅱ),.【點睛】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.21、(Ⅰ)或.(Ⅱ)【解析】
(Ⅰ)勾股定理求出圓心到直線的距離d,利用d=1以直線的斜率存在、不存在兩種情況進行分類討論;(Ⅱ)設,由求出x、y滿足的關系式,可得點在圓上,推出圓與圓有公共點,所以,列出不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中職礦山通風安全管理應用管理(管理技術)試題及答案
- 2026年沖突管理手冊(沖突管理指南編寫)試題及答案
- 2025年高職汽車檢測與維修技術(故障診斷)試題及答案
- 2025年高職(寵物醫(yī)療技術)疾病診療階段測試題及答案
- 2025年高職(輪機工程技術)船舶動力裝置維護綜合測試試題及答案
- 2025年大學大一(人工智能技術)人工智能應用技術階段測試題
- 禁毒網(wǎng)格員培訓課件
- 2025年注冊會計師(CPA)考試 會計科目強化訓練試卷及答案詳解
- 山東農(nóng)業(yè)大學就業(yè)指南
- 天津市第一0二中學2025-2026學年高三上學期12月月考語文試題(含答案)
- 《電力建設安全工作規(guī)程》-第1部分火力發(fā)電廠
- 歌曲《我會等》歌詞
- 干部因私出國(境)管理有關要求
- 八年級物理上冊期末測試試卷-附帶答案
- 小學英語五年級上冊Unit 5 Part B Let's talk 教學設計
- 老年癡呆科普課件整理
- 學生校服供應服務實施方案
- 2022年鈷資源產(chǎn)業(yè)鏈全景圖鑒
- GB/T 22900-2022科學技術研究項目評價通則
- 自動控制系統(tǒng)的類型和組成
- GB/T 15171-1994軟包裝件密封性能試驗方法
評論
0/150
提交評論