江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題含解析_第1頁
江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題含解析_第2頁
江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題含解析_第3頁
江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題含解析_第4頁
江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省常州市田家炳中學2024屆數(shù)學高一下期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.將函數(shù)的圖象向右平移個單位長度得到圖象,則函數(shù)的解析式是()A. B.C. D.2.正三角形的邊長為,如圖,為其水平放置的直觀圖,則的周長為()A. B. C. D.3.如圖所示,在四邊形中,,,.將四邊形沿對角線折成四面體,使平面平面,則下列結(jié)論中正確的結(jié)論個數(shù)是()①;②;③與平面所成的角為;④四面體的體積為.A.個 B.個 C.個 D.個4.下列各角中,與126°角終邊相同的角是()A. B. C. D.5.若函數(shù)的最小正周期為2,則()A.1 B.2 C. D.6.若a、b、c>0且a(a+b+c)+bc=4-2,則2a+b+c的最小值為()A.-1 B.+1C.2+2 D.2-27.已知α、β為銳角,cosα=,tan(α?β)=?,則tanβ=()A. B.3 C. D.8.下列正確的是()A.若a,b∈R,則B.若x<0,則x+≥-2=-4C.若ab≠0,則D.若x<0,則2x+2-x>29.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.6 B.4C. D.10.若不等式對實數(shù)恒成立,則實數(shù)的取值范圍()A.或 B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若則的最小值是__________.12.設(shè)ω為正實數(shù).若存在a、b(π≤a<b≤2π),使得13.已知點在直線上,則的最小值為__________.14.已知向量,且,則的值為______15.正六棱柱底面邊長為10,高為15,則這個正六棱柱的體積是_____.16.在等比數(shù)列中,,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標系xOy中,已知點,圓.(1)求過點P且與圓C相切于原點的圓的標準方程;(2)過點P的直線l與圓C依次相交于A,B兩點.①若,求l的方程;②當面積最大時,求直線l的方程.18.已知向量,且(1)當時,求及的值;(2)若函數(shù)的最小值是,求實數(shù)的值.19.己知向量,,設(shè)函數(shù),且的圖象過點和點.(1)當時,求函數(shù)的最大值和最小值及相應(yīng)的的值;(2)將函數(shù)的圖象向右平移個單位后,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得到函數(shù)的圖象,若在有兩個不同的解,求實數(shù)的取值范圍.20.設(shè)Sn為數(shù)列{an}的前n項和,已知a1=3,Sn=1Sn﹣1+n(n≥1)(1)求出a1,a3的值,并證明:數(shù)列{an+1}為等比數(shù)列;(1)設(shè)bn=log1(a3n+1),數(shù)列{}的前n項和為Tn,求證:1≤18Tn<1.21.已知分別為三個內(nèi)角的對邊長,且(1)求角的大小;(2)若,求面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

由題意利用三角函數(shù)的圖象變換原則,即可得出結(jié)論.【詳解】由題意,將函數(shù)的圖象向右平移個單位長度,可得.故選C.【點睛】本題主要考查三角函數(shù)的圖像變換,熟記圖像變換原則即可,屬于??碱}型.2、C【解析】

根據(jù)斜二測畫法以及正余弦定理求解各邊長再求周長即可.【詳解】由斜二測畫法可知,,,.所以.故..故.所以的周長為.故選:C【點睛】本題主要考查了斜二測畫法的性質(zhì)以及余弦定理在求解三角形中線段長度的運用.屬于基礎(chǔ)題.3、B【解析】

根據(jù)題意,依次分析命題:對于①,可利用反證法說明真假;對于②,為等腰直角三角形,平面,得平面,根據(jù)勾股定理逆定理可知;對于③,由與平面所成的角為知真假;對于④,利用等體積法求出所求體積進行判定即可,綜合可得答案.【詳解】在四邊形中,,,則,可得,由,若,且,可得平面,平面,,這與矛盾,故①不正確;平面平面,平面平面,,平面,平面,平面,,由勾股定理得,,,,故,故②正確;由②知平面,則直線與平面所成的角為,且有,,則為等腰直角三角形,且,則.故③不正確;四面體的體積為,故④不正確.故選:B.【點睛】本題主要考查了直線與平面所成的角,以及三棱錐的體積的計算,考查了空間想象能力,推理論證能力,解題的關(guān)鍵是須對每一個進行逐一判定.4、B【解析】

寫出與126°的角終邊相同的角的集合,取k=1得答案.【詳解】解:與126°的角終邊相同的角的集合為{α|α=126°+k?360°,k∈Z}.取k=1,可得α=486°.∴與126°的角終邊相同的角是486°.故選B.【點睛】本題考查終邊相同角的計算,是基礎(chǔ)題.5、C【解析】

根據(jù)可求得結(jié)果.【詳解】由題意知:,解得:本題正確選項:【點睛】本題考查余弦型函數(shù)最小正周期的求解問題,屬于基礎(chǔ)題.6、D【解析】由a(a+b+c)+bc=4-2,得(a+c)·(a+b)=4-2.∵a、b、c>0.∴(a+c)·(a+b)≤(當且僅當a+c=b+a,即b=c時取“=”),∴2a+b+c≥2=2(-1)=2-2.故選:D點睛:在利用基本不等式求最值時,要特別注意“拆、拼、湊”等技巧,使其滿足基本不等式中“正”(即條件要求中字母為正數(shù))、“定”(不等式的另一邊必須為定值)、“等”(等號取得的條件)的條件才能應(yīng)用,否則會出現(xiàn)錯誤7、B【解析】

利用角的關(guān)系,再利用兩角差的正切公式即可求出的值.【詳解】因為,且為銳角,則,所以,因為,所以故選B.【點睛】主要考查了兩角差的正切公式,同角三角函數(shù)的平方關(guān)系,屬于中檔題.對于給值求值問題,關(guān)鍵是尋找已知角(條件中的角)與未知角(問題中的角)的關(guān)系,用已知角表示未知角,從而將問題轉(zhuǎn)化為求已知角的三角函數(shù)值,再利用兩角和與差的三角函數(shù)公式、二倍角公式以及誘導公式即可求出.8、D【解析】對于A,當ab<0時不成立;對于B,若x<0,則x+=-≤-2=-4,當且僅當x=-2時,等號成立,因此B選項不成立;對于C,取a=-1,b=-2,+=-<a+b=-3,所以C選項不成立;對于D,若x<0,則2x+2-x>2成立.故選D.9、A【解析】該立方體是正方體,切掉一個三棱柱,所以體積為,故選A。點睛:本題考查三視圖還原,并求體積。此類題關(guān)鍵就是三視圖的還原,還原過程中,本題采取切割法處理,有圖可知,該立方體應(yīng)該是正方體進行切割產(chǎn)生的,所以我們在畫圖的過程在,對正方體進行切割比較即可。10、C【解析】

對m分m≠0和m=0兩種情況討論分析得解.【詳解】由題得時,x<0,與已知不符,所以m≠0.當m≠0時,,所以.綜合得m的取值范圍為.故選C【點睛】本題主要考查一元二次不等式的恒成立問題,意在考查學生對該知識的理解掌握水平和分析推理能力.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)對數(shù)相等得到,利用基本不等式求解的最小值得到所求結(jié)果.【詳解】則,即由題意知,則,則當且僅當,即時取等號本題正確結(jié)果:【點睛】本題考查基本不等式求解和的最小值問題,關(guān)鍵是能夠利用對數(shù)相等得到的關(guān)系,從而構(gòu)造出符合基本不等式的形式.12、ω∈[【解析】

由sinωa+sinωb=2?sinωa=sinωb=1.而[ωa,ωb]?[ωπ,2ωπ]【詳解】由sinωa+而[ωa,ωb]?[ωπ,2ωπ],故已知條件等價于:存在整數(shù)ωπ當ω≥4時,區(qū)間[ωπ,2ωπ]的長度不小于4π當0<ω<4時,注意到,[ωπ故只要考慮如下幾種情形:(1)ωπ≤π2<(2)ωπ≤5(3)ωπ≤9綜上,并注意到ω≥4也滿足條件,知ω∈[9故答案為:ω∈[【點睛】本題主要考查三角函數(shù)的圖像和性質(zhì),意在考查學生對這些知識的掌握水平和分析推理能力.13、5【解析】

由題得表示點到點的距離,再利用點到直線的距離求解.【詳解】由題得表示點到點的距離.又∵點在直線上,∴的最小值等于點到直線的距離,且.【點睛】本題主要考查點到兩點間的距離和點到直線的距離的計算,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.14、-7【解析】

,利用列方程求解即可.【詳解】,且,,解得:.【點睛】考查向量加法、數(shù)量積的坐標運算.15、【解析】

正六棱柱是底面為正六邊形的直棱柱,利用計算可得結(jié)果.【詳解】因為正六棱柱底面邊長為10,所以其面積,所以體積.【點睛】本題考查正六棱柱的概念及其體積的計算,考查基本運算能力.16、【解析】

根據(jù)等比數(shù)列中,,得到公比,再寫出和,從而得到.【詳解】因為為等比數(shù)列,,,所以,所以,,所以.故答案為:.【點睛】本題考查等比數(shù)列通項公式中的基本量計算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)①;②或.【解析】

(1)設(shè)所求圓的圓心為,而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,求出圓的圓心和半徑,即可得答案;(2)①由題意可得為圓的直徑,求出的坐標,可得直線的方程;②當直線的斜率不存在時,直線方程為,求出,的坐標,得到的面積;當直線的斜率存在時,設(shè)直線方程為.利用基本不等式、點到直線的距離公式求得,則直線方程可求.【詳解】(1)由,得,圓的圓心坐標,設(shè)所求圓的圓心為.而所求圓的圓心與、共線,故圓心在直線上,又圓同時經(jīng)過點與點,圓心又在直線上,則有:,解得:,即圓心的坐標為,又,即半徑,故所求圓的方程為;(2)①由,得為圓的直徑,則過點,的方程為,聯(lián)立,解得,直線的斜率,則直線的方程為,即;②當直線的斜率不存在時,直線方程為,此時,,,;當直線的斜率存在時,設(shè)直線方程為.再設(shè)直線被圓所截弦長為,則圓心到直線的距離,則.當且僅當,即時等號成立.此時弦長為10,圓心到直線的距離為5,由,解得.直線方程為.當面積最大時,所求直線的方程為:或.【點睛】本題考查圓的方程的求法、直線與圓的位置關(guān)系應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類討論思想、數(shù)形結(jié)合思想,考查邏輯推理能力和運算求解能力.18、(1),(2).【解析】

(1)以向量為載體求解向量數(shù)量積、模長,我們只需要把向量坐標表示出來,最后用公式就能輕松完成;(2)由(1)可以把表達式求出,最終化成二次復(fù)合型函數(shù)模式,考慮軸與區(qū)間的位置關(guān)系,我們就能對函數(shù)進行進一步的研究.【詳解】(1)因為,所以又因為,所以(2),當時,.當時,不滿足.當時,,,不滿足.綜上,實數(shù)的值為.【點睛】在研究三角函數(shù)相關(guān)的性質(zhì)(值域、對稱中心、對稱軸、單調(diào)性……)我們都是將其化為(或者余弦、正切相對應(yīng))的形式,利用整體思想,我們能比較方便的去研究他們相關(guān)性質(zhì).第二問中我們其實就是求最小值問題,當然摻雜了二次函數(shù)的“軸變區(qū)間定”的考點.,綜合性較強.19、(1)最大值為2,此時;最小值為-1,此時.(2)【解析】

(1)根據(jù)向量數(shù)量積坐標公式,列出函數(shù),再根據(jù)函數(shù)圖像過定點,求解函數(shù)解析式,當時,解出的范圍,根據(jù)三角函數(shù)性質(zhì),可求最值;(2)根據(jù)三角函數(shù)平移伸縮變換,寫出解析式,畫出在上的圖象,根據(jù)圖像即可求解參數(shù)取值范圍.【詳解】解:(1)由題意知.根據(jù)的圖象過點和,得到,解得,.當時,,,最大值為2,此時,最小值為-1,此時.(2)將函數(shù)的圖象向右平移一個單位得,再將得到的圖象上各點的橫坐標伸長為原來的4倍,縱坐標不變,得令,,如圖當時,在有兩個不同的解∴,即.【點睛】本題考查(1)三角函數(shù)最值問題(2)三角函數(shù)的平移伸縮變換,考查計算能力,考查轉(zhuǎn)化與化歸思想,考查數(shù)形結(jié)合思想,屬于中等題型.20、(1)見解析;(1)見解析【解析】

(1)可令求得的值;再由數(shù)列的遞推式,作差可得,可得數(shù)列為首項為1,公比為1的等比數(shù)列;(1)由(1)求得,,再由數(shù)列的裂項相消求和,可得,再由不等式的性質(zhì)即可得證.【詳解】(1)當時,,即,∴,當時,,即,∴,∵,∴,,∴,∴,又∵,,∴,∴,∴數(shù)列是首項為,公比為1的等比數(shù)列.(1)由(1)可知,所以,所以,,,,所以,所以,即.【點睛】本

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論