版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省開封市2024年高一下數(shù)學(xué)期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,當(dāng)時(shí),不等式恒成立,則的取值范圍是A. B. C. D.2.為了了解運(yùn)動(dòng)員對(duì)志愿者服務(wù)質(zhì)量的意見,打算從1200名運(yùn)動(dòng)員中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段間隔為A.40 B.20 C.30 D.123.△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c.已知,a=2,c=,則C=A. B. C. D.4.?dāng)?shù)列,,,,,,的一個(gè)通項(xiàng)公式為()A. B.C. D.5.下面結(jié)論中,正確結(jié)論的是()A.存在兩個(gè)不等實(shí)數(shù),使得等式成立B.(0<x<π)的最小值為4C.若是等比數(shù)列的前項(xiàng)的和,則成等比數(shù)列D.已知的三個(gè)內(nèi)角所對(duì)的邊分別為,若,則一定是銳角三角形6.已知直線與圓交于M,N兩點(diǎn),若,則k的值為()A. B. C. D.7.已知函數(shù)f(x)是定義在上的奇函數(shù),當(dāng)x>0時(shí),f(x)=2x-3,則A.14B.-114C.8.在△ABC中,點(diǎn)D在線段BC的延長(zhǎng)線上,且=3,點(diǎn)O在線段CD上(與點(diǎn)C,D不重合),若=x+(1-x),則x的取值范圍是()A. B.C. D.9.空間直角坐標(biāo)系中,點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是()A. B.C. D.10.在三棱柱中,底面,是正三角形,若,則該三棱柱外接球的表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在平面直角坐標(biāo)系中,為原點(diǎn),,動(dòng)點(diǎn)滿足,則的最大值是.12.若向量,,且,則實(shí)數(shù)______.13.《九章算術(shù)》中,將底面為長(zhǎng)方形且由一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,將四個(gè)面都為直角三角形的三棱錐稱之為鱉臑.若三棱錐為鱉臑,平面,,三棱錐的四個(gè)頂點(diǎn)都在球的球面上,則球的表面積為__________.14.正六棱柱底面邊長(zhǎng)為10,高為15,則這個(gè)正六棱柱的體積是_____.15.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則______.16.已知等比數(shù)列的公比為,關(guān)于的不等式有下列說(shuō)法:①當(dāng)吋,不等式的解集②當(dāng)吋,不等式的解集為③當(dāng)>0吋,存在公比,使得不等式解集為④存在公比,使得不等式解集為R.上述說(shuō)法正確的序號(hào)是_______.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17.已知函數(shù),,值域?yàn)椋蟪?shù)、的值;18.已知數(shù)列滿足:,,.(1)求證:數(shù)列為等差數(shù)列,并求出數(shù)列的通項(xiàng)公式;(2)記(),用數(shù)學(xué)歸納法證明:,19.如圖所示,在中,點(diǎn)在邊上,,,,.(1)求的值;(2)求的面積.20.在△中,若.(Ⅰ)求角的大小;(Ⅱ)若,,求△的面積.21.已知向量,,.(1)若、、三點(diǎn)共線,求;(2)求的面積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】
根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對(duì)得到的不等式因式分解,即可解得m的值.【詳解】因?yàn)椋?,,所?因?yàn)椴坏仁胶愠闪?,所以,整理得,解得,?【點(diǎn)睛】本題考查基本不等式,由為定值和已知不等式相乘來(lái)構(gòu)造基本不等式,最后含有根式的因式分解也是解題關(guān)鍵.2、C【解析】
根據(jù)系統(tǒng)抽樣的定義和方法,結(jié)合題意可分段的間隔等于個(gè)體總數(shù)除以樣本容量,即可求解.【詳解】根據(jù)系統(tǒng)抽樣的定義和方法,結(jié)合題意可分段的間隔,故選C.【點(diǎn)睛】本題主要考查了系統(tǒng)抽樣的定義和方法,其中解答中熟記系統(tǒng)抽樣的定義和方法是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、B【解析】
試題分析:根據(jù)誘導(dǎo)公式和兩角和的正弦公式以及正弦定理計(jì)算即可詳解:sinB=sin(A+C)=sinAcosC+cosAsinC,∵sinB+sinA(sinC﹣cosC)=0,∴sinAcosC+cosAsinC+sinAsinC﹣sinAcosC=0,∴cosAsinC+sinAsinC=0,∵sinC≠0,∴cosA=﹣sinA,∴tanA=﹣1,∵<A<π,∴A=,由正弦定理可得,∵a=2,c=,∴sinC==,∵a>c,∴C=,故選B.點(diǎn)睛:本題主要考查正弦定理及余弦定理的應(yīng)用,屬于難題.在解與三角形有關(guān)的問題時(shí),正弦定理、余弦定理是兩個(gè)主要依據(jù).解三角形時(shí),有時(shí)可用正弦定理,有時(shí)也可用余弦定理,應(yīng)注意用哪一個(gè)定理更方便、簡(jiǎn)捷一般來(lái)說(shuō),當(dāng)條件中同時(shí)出現(xiàn)及、時(shí),往往用余弦定理,而題設(shè)中如果邊和正弦、余弦函數(shù)交叉出現(xiàn)時(shí),往往運(yùn)用正弦定理將邊化為正弦函數(shù)再結(jié)合和、差、倍角的正余弦公式進(jìn)行解答.4、C【解析】
首先注意到數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,其次數(shù)列各項(xiàng)絕對(duì)值構(gòu)成一個(gè)以1為首項(xiàng),以2為公差的等差數(shù)列,從而易求出其通項(xiàng)公式.【詳解】∵數(shù)列{an}各項(xiàng)值為,,,,,,∴各項(xiàng)絕對(duì)值構(gòu)成一個(gè)以1為首項(xiàng),以2為公差的等差數(shù)列,∴|an|=2n﹣1又∵數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,∴an=(﹣1)n(2n﹣1).故選:C.【點(diǎn)睛】本題給出數(shù)列的前幾項(xiàng),猜想數(shù)列的通項(xiàng),挖掘其規(guī)律是關(guān)鍵.解題時(shí)應(yīng)注意數(shù)列的奇數(shù)項(xiàng)為負(fù),偶數(shù)項(xiàng)為正,否則會(huì)錯(cuò).5、A【解析】
對(duì)各個(gè)選項(xiàng)逐一判斷,對(duì)于選項(xiàng)A,由,代入計(jì)算,即可判斷是否正確;對(duì)于選項(xiàng)B,設(shè),結(jié)合函數(shù)的單調(diào)性,即可判斷是否正確;對(duì)于選項(xiàng)C,由公比為為偶數(shù),即可判斷是否正確;對(duì)于選項(xiàng)D,由余弦定理,即可判斷是否正確.【詳解】對(duì)于選項(xiàng)A,兩個(gè)不等實(shí)數(shù),使得等式成立,故A正確;對(duì)于選項(xiàng)B,若設(shè)設(shè),可得在遞減,即函數(shù)的最小值為,故B錯(cuò)誤;對(duì)于選項(xiàng)C,是等比數(shù)列的前項(xiàng)的和,當(dāng)公比,為偶數(shù)時(shí),則,均為,不能夠成等比數(shù)列,故C錯(cuò)誤;對(duì)于選項(xiàng)D,中,若,可得,即為銳角,不能判斷一定是銳角三角形,故D錯(cuò)誤.故選:A.【點(diǎn)睛】本題考查兩角和的正弦公式、基本不等式和等比數(shù)列的性質(zhì),以及余弦定理的應(yīng)用,屬于基礎(chǔ)題.6、C【解析】
先求得圓心到直線的距離,再根據(jù)圓的弦長(zhǎng)公式求解.【詳解】圓心到直線的距離為:由圓的弦長(zhǎng)公式:得解得故選:C【點(diǎn)睛】本題主要考查了直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.7、D【解析】試題分析:函數(shù)f(x)是定義在上的奇函數(shù),,故答案為D.考點(diǎn):奇函數(shù)的應(yīng)用.8、D【解析】
根據(jù)所給的數(shù)量關(guān)系,寫出要求向量的表示式,注意共線的向量之間的三分之一關(guān)系,根據(jù)表示的關(guān)系式和所給的關(guān)系式進(jìn)行比較,得到結(jié)果.【詳解】如圖.依題意,設(shè)=λ,其中1<λ<,則有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且不共線,于是有x=1-λ∈,即x的取值范圍是.故選D.【點(diǎn)睛】本題考查向量的基本定理,是一個(gè)基礎(chǔ)題,這種題目可以出現(xiàn)在解答題目中,也可以單獨(dú)出現(xiàn),注意表示向量時(shí),一般從向量的起點(diǎn)出發(fā),繞著圖形的邊到終點(diǎn).9、A【解析】
關(guān)于軸對(duì)稱,縱坐標(biāo)不變,橫坐標(biāo)、豎坐標(biāo)變?yōu)橄喾磾?shù).【詳解】關(guān)于軸對(duì)稱的兩點(diǎn)的縱坐標(biāo)相同,橫坐標(biāo)、豎坐標(biāo)均互為相反數(shù).所以點(diǎn)關(guān)于軸對(duì)稱的點(diǎn)的坐標(biāo)是.故選:A.【點(diǎn)睛】本題考查空間平面直角坐標(biāo)系,考查關(guān)于坐標(biāo)軸、坐標(biāo)平面對(duì)稱的問題.屬于基礎(chǔ)題.10、C【解析】
設(shè)球心為,的中心為,求出與,利用勾股定理求出外接球的半徑,代入球的表面積公式即可.【詳解】設(shè)球心為,的中心為,則,,球的半徑,所以球的表面積為.故選:C【點(diǎn)睛】本題考查多面體外接球問題,球的表面積公式,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
試題分析:設(shè),表示以為圓心,r=1為半徑的圓,而,所以,,,故得最大值為考點(diǎn):1.圓的標(biāo)準(zhǔn)方程;2.向量模的運(yùn)算12、【解析】
根據(jù),兩個(gè)向量平行的條件是建立等式,解之即可.【詳解】解:因?yàn)椋?,且所以解得故答案為:【點(diǎn)睛】本題主要考查兩個(gè)向量坐標(biāo)形式的平行的充要條件,屬于基礎(chǔ)題.13、【解析】
由題意得該四面體的四個(gè)面都為直角三角形,且平面,可得,.因?yàn)闉橹苯侨切?,可得,所以,因此,結(jié)合幾何關(guān)系,可求得外接球的半徑,,代入公式即可求球的表面積.【詳解】本題主要考查空間幾何體.由題意得該四面體的四個(gè)面都為直角三角形,且平面,,,,.因?yàn)闉橹苯侨切?,因此或(舍).所以只可能是,此時(shí),因此,所以平面所在小圓的半徑即為,又因?yàn)?,所以外接球的半徑,所以球的表面積為.【點(diǎn)睛】本題考查三棱錐的外接球問題,難點(diǎn)在于確定BC的長(zhǎng),即得到,再結(jié)合幾何性質(zhì)即可求解,考查學(xué)生空間想象能力,邏輯推理能力,計(jì)算能力,屬中檔題.14、【解析】
正六棱柱是底面為正六邊形的直棱柱,利用計(jì)算可得結(jié)果.【詳解】因?yàn)檎庵酌孢呴L(zhǎng)為10,所以其面積,所以體積.【點(diǎn)睛】本題考查正六棱柱的概念及其體積的計(jì)算,考查基本運(yùn)算能力.15、10【解析】
將和用首項(xiàng)和公差表示,解方程組,求出首項(xiàng)和公式,利用公式求解.【詳解】設(shè)該數(shù)列的公差為,由題可知:,解得,故.故答案為:10.【點(diǎn)睛】本題考查由基本量計(jì)算等差數(shù)列的通項(xiàng)公式以及前項(xiàng)和,屬基礎(chǔ)題.16、③【解析】
利用等比數(shù)列的通項(xiàng)公式,解不等式后可得結(jié)論.【詳解】由題意,不等式變?yōu)?,即,若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),解為;若,則,當(dāng)或時(shí)解為,當(dāng)或時(shí),解為,時(shí),不等式無(wú)解.對(duì)照A、B、C、D,只有C正確.故選C.【點(diǎn)睛】本題考查等比數(shù)列的通項(xiàng)公式,考查解一元二次不等式,難點(diǎn)是解一元二次不等式,注意分類討論,本題中需對(duì)二次項(xiàng)系數(shù)分正負(fù),然后以要對(duì)兩根分大小,另外還有一個(gè)是相應(yīng)的一元二次方程是否有實(shí)數(shù)解分類(本題已經(jīng)有兩解,不需要這個(gè)分類).三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過程或演算步驟。17、,;或,;【解析】
先利用輔助角公式化簡(jiǎn),再根據(jù),值域?yàn)榍蠼饧纯?【詳解】.又則,當(dāng)時(shí),,此時(shí)當(dāng)時(shí),,此時(shí)故,;或,;【點(diǎn)睛】本題主要考查了三角函數(shù)的輔助角公式以及三角函數(shù)值域的問題,需要根據(jù)自變量的范圍求出值域,同時(shí)注意正弦函數(shù)部分的系數(shù)正負(fù),屬于中等題型.18、(1)證明見解析,;(2)見解析【解析】
(1)定義法證明:;(2)采用數(shù)學(xué)歸納法直接證明(注意步驟).【詳解】由可知:,則有,即,所以為等差數(shù)列,且首相為,公差,所以,故;(2),當(dāng)時(shí),成立;假設(shè)當(dāng)時(shí),不等式成立則:;當(dāng)時(shí),,因?yàn)椋?,則,故時(shí)不等式成立,綜上可知:.【點(diǎn)睛】數(shù)學(xué)歸納法的一般步驟:(1)命題成立;(2)假設(shè)命題成立;(3)證明命題成立(一定要借助假設(shè),否則不能稱之為數(shù)學(xué)歸納法).19、(1)(2)【解析】
(1)設(shè),分別在和中利用余弦定理計(jì)算,聯(lián)立方程組,求得的值,再由余弦定理,即可求解的值;(2)由(1)的結(jié)論,計(jì)算,利用三角形的面積公式,即可求解.【詳解】(1),則,所以在中,由余弦定理得,在中,由余弦定理得,所以,解得,所以,由余弦定理得(2)由(1)求得,,所以,所以.【點(diǎn)睛】本題主要考查了余弦定理和三角形的面積公式的應(yīng)用,其中在解有關(guān)三角形的題目時(shí),要抓住題設(shè)條件和利用某個(gè)定理的信息,合理應(yīng)用正弦定理和余弦定理列出方程是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.20、(Ⅰ)(Ⅱ)【解析】
(I)利用正弦定理化簡(jiǎn)已知條件,由此求得的大小.(II)利用余弦定理求得的值,再根據(jù)三角形面積公式求得三角形面積.【詳解】解:(Ⅰ)在△中,由正弦定理可知,,所以.所以.即.(Ⅱ)在△中,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 古代史閻步克課件
- 2025年哈爾濱商貿(mào)職業(yè)學(xué)院馬克思主義基本原理概論期末考試模擬題含答案解析(必刷)
- 2025年平泉縣幼兒園教師招教考試備考題庫(kù)附答案解析(必刷)
- 2025年康平縣招教考試備考題庫(kù)附答案解析
- 2025年華坪縣招教考試備考題庫(kù)及答案解析(必刷)
- 2025年尤溪縣幼兒園教師招教考試備考題庫(kù)附答案解析
- 2025年泉州工程職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)適應(yīng)性考試題庫(kù)附答案解析
- 2024年遂寧工程職業(yè)學(xué)院馬克思主義基本原理概論期末考試題附答案解析(奪冠)
- 2026年貴州民用航空職業(yè)學(xué)院?jiǎn)握新殬I(yè)傾向性測(cè)試模擬測(cè)試卷附答案解析
- 2025年陜西省銅川市單招職業(yè)適應(yīng)性測(cè)試題庫(kù)附答案解析
- 粉塵職業(yè)?。▔m肺病、皮膚?。┪:?yīng)急預(yù)案
- 2026年江蘇蘇北四市高三一模高考英語(yǔ)試卷試題(答案詳解)
- 實(shí)驗(yàn)室安全培訓(xùn)P53
- 2026年安徽省江淮糧倉(cāng)融資擔(dān)保有限公司(籌)招聘考試參考試題及答案解析
- 音樂節(jié)活動(dòng)場(chǎng)地租賃合同
- 風(fēng)險(xiǎn)管理顧問協(xié)議
- 一年級(jí)下冊(cè)字帖筆順
- 2024屆高考語(yǔ)文復(fù)習(xí):散文訓(xùn)練王劍冰散文(含解析)
- SWITCH暗黑破壞神3超級(jí)金手指修改 版本號(hào):2.7.7.92380
- 二尖瓣狹窄講課課件
- 腸造瘺術(shù)后護(hù)理查房
評(píng)論
0/150
提交評(píng)論