安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題含解析_第1頁(yè)
安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題含解析_第2頁(yè)
安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題含解析_第3頁(yè)
安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題含解析_第4頁(yè)
安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩17頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省合肥市金湯白泥樂(lè)槐六校2024年高三最后一模數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖,在底面邊長(zhǎng)為1,高為2的正四棱柱中,點(diǎn)是平面內(nèi)一點(diǎn),則三棱錐的正視圖與側(cè)視圖的面積之和為()A.2 B.3 C.4 D.52.已知函數(shù),若不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是()A. B. C. D.3.函數(shù)在上的圖象大致為()A. B. C. D.4.定義在上的奇函數(shù)滿(mǎn)足,若,,則()A. B.0 C.1 D.25.某幾何體的三視圖如圖所示,則此幾何體的體積為()A. B.1 C. D.6.若(是虛數(shù)單位),則的值為()A.3 B.5 C. D.7.下列函數(shù)中,值域?yàn)榈呐己瘮?shù)是()A. B. C. D.8.已知雙曲線:的焦距為,焦點(diǎn)到雙曲線的漸近線的距離為,則雙曲線的漸近線方程為()A. B. C. D.9.已知正方體的棱長(zhǎng)為2,點(diǎn)為棱的中點(diǎn),則平面截該正方體的內(nèi)切球所得截面面積為()A. B. C. D.10.設(shè)不等式組,表示的平面區(qū)域?yàn)?,在區(qū)域內(nèi)任取一點(diǎn),則點(diǎn)的坐標(biāo)滿(mǎn)足不等式的概率為A. B.C. D.11.設(shè),隨機(jī)變量的分布列是01則當(dāng)在內(nèi)增大時(shí),()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大12.已知底面為邊長(zhǎng)為的正方形,側(cè)棱長(zhǎng)為的直四棱柱中,是上底面上的動(dòng)點(diǎn).給出以下四個(gè)結(jié)論中,正確的個(gè)數(shù)是()①與點(diǎn)距離為的點(diǎn)形成一條曲線,則該曲線的長(zhǎng)度是;②若面,則與面所成角的正切值取值范圍是;③若,則在該四棱柱六個(gè)面上的正投影長(zhǎng)度之和的最大值為.A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,,則__________.14.函數(shù)的圖象向右平移個(gè)單位后,與函數(shù)的圖象重合,則_____.15.設(shè)實(shí)數(shù)滿(mǎn)足約束條件,則的最大值為_(kāi)_____.16.隨著國(guó)力的發(fā)展,人們的生活水平越來(lái)越好,我國(guó)的人均身高較新中國(guó)成立初期有大幅提高.為了掌握學(xué)生的體質(zhì)與健康現(xiàn)狀,合理制定學(xué)校體育衛(wèi)生工作發(fā)展規(guī)劃,某市進(jìn)行了一次全市高中男生身高統(tǒng)計(jì)調(diào)查,數(shù)據(jù)顯示全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,那么該市身高高于的高中男生人數(shù)大約為_(kāi)_________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是,直線和直線的極坐標(biāo)方程分別是()和(),其中().(1)寫(xiě)出曲線的直角坐標(biāo)方程;(2)設(shè)直線和直線分別與曲線交于除極點(diǎn)的另外點(diǎn),,求的面積最小值.18.(12分)已知數(shù)列的前項(xiàng)和為,且點(diǎn)在函數(shù)的圖像上;(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列滿(mǎn)足:,,求的通項(xiàng)公式;(3)在第(2)問(wèn)的條件下,若對(duì)于任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;19.(12分)已知函數(shù)(1)若恒成立,求實(shí)數(shù)的取值范圍;(2)若方程有兩個(gè)不同實(shí)根,,證明:.20.(12分)如圖,在四棱錐中,底面是矩形,是的中點(diǎn),平面,且,.()求與平面所成角的正弦.()求二面角的余弦值.21.(12分)在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛(ài)之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.22.(10分)百年大計(jì),教育為本.某校積極響應(yīng)教育部號(hào)召,不斷加大拔尖人才的培養(yǎng)力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長(zhǎng)班進(jìn)行專(zhuān)項(xiàng)培訓(xùn).據(jù)統(tǒng)計(jì)有如下表格.(其中表示通過(guò)自主招生獲得降分資格的學(xué)生人數(shù),表示被清華、北大等名校錄取的學(xué)生人數(shù))年份(屆)2014201520162017201841495557638296108106123(1)通過(guò)畫(huà)散點(diǎn)圖發(fā)現(xiàn)與之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;(保留兩位有效數(shù)字)(2)若已知該校2019年通過(guò)自主招生獲得降分資格的學(xué)生人數(shù)為61人,預(yù)測(cè)2019年高考該??既嗣5娜藬?shù);(3)若從2014年和2018年考人名校的學(xué)生中采用分層抽樣的方式抽取出5個(gè)人回校宣傳,在選取的5個(gè)人中再選取2人進(jìn)行演講,求進(jìn)行演講的兩人是2018年畢業(yè)的人數(shù)的分布列和期望.參考公式:,參考數(shù)據(jù):,,,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)幾何體分析正視圖和側(cè)視圖的形狀,結(jié)合題干中的數(shù)據(jù)可計(jì)算出結(jié)果.【詳解】由三視圖的性質(zhì)和定義知,三棱錐的正視圖與側(cè)視圖都是底邊長(zhǎng)為高為的三角形,其面積都是,正視圖與側(cè)視圖的面積之和為,故選:A.【點(diǎn)睛】本題考查幾何體正視圖和側(cè)視圖的面積和,解答的關(guān)鍵就是分析出正視圖和側(cè)視圖的形狀,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.2、A【解析】

先求出函數(shù)在處的切線方程,在同一直角坐標(biāo)系內(nèi)畫(huà)出函數(shù)和的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.【詳解】當(dāng)時(shí),,所以函數(shù)在處的切線方程為:,令,它與橫軸的交點(diǎn)坐標(biāo)為.在同一直角坐標(biāo)系內(nèi)畫(huà)出函數(shù)和的圖象如下圖的所示:利用數(shù)形結(jié)合思想可知:不等式對(duì)任意的恒成立,則實(shí)數(shù)k的取值范圍是.故選:A【點(diǎn)睛】本題考查了利用數(shù)形結(jié)合思想解決不等式恒成立問(wèn)題,考查了導(dǎo)數(shù)的應(yīng)用,屬于中檔題.3、C【解析】

根據(jù)函數(shù)的奇偶性及函數(shù)在時(shí)的符號(hào),即可求解.【詳解】由可知函數(shù)為奇函數(shù).所以函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱(chēng),排除選項(xiàng)A,B;當(dāng)時(shí),,,排除選項(xiàng)D,故選:C.【點(diǎn)睛】本題主要考查了函數(shù)的奇偶性的判定及奇偶函數(shù)圖像的對(duì)稱(chēng)性,屬于中檔題.4、C【解析】

首先判斷出是周期為的周期函數(shù),由此求得所求表達(dá)式的值.【詳解】由已知為奇函數(shù),得,而,所以,所以,即的周期為.由于,,,所以,,,.所以,又,所以.故選:C【點(diǎn)睛】本小題主要考查函數(shù)的奇偶性和周期性,屬于基礎(chǔ)題.5、C【解析】該幾何體為三棱錐,其直觀圖如圖所示,體積.故選.6、D【解析】

直接利用復(fù)數(shù)的模的求法的運(yùn)算法則求解即可.【詳解】(是虛數(shù)單位)可得解得本題正確選項(xiàng):【點(diǎn)睛】本題考查復(fù)數(shù)的模的運(yùn)算法則的應(yīng)用,復(fù)數(shù)的模的求法,考查計(jì)算能力.7、C【解析】試題分析:A中,函數(shù)為偶函數(shù),但,不滿(mǎn)足條件;B中,函數(shù)為奇函數(shù),不滿(mǎn)足條件;C中,函數(shù)為偶函數(shù)且,滿(mǎn)足條件;D中,函數(shù)為偶函數(shù),但,不滿(mǎn)足條件,故選C.考點(diǎn):1、函數(shù)的奇偶性;2、函數(shù)的值域.8、A【解析】

利用雙曲線:的焦點(diǎn)到漸近線的距離為,求出,的關(guān)系式,然后求解雙曲線的漸近線方程.【詳解】雙曲線:的焦點(diǎn)到漸近線的距離為,可得:,可得,,則的漸近線方程為.故選A.【點(diǎn)睛】本題考查雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,構(gòu)建出的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于中檔題.9、A【解析】

根據(jù)球的特點(diǎn)可知截面是一個(gè)圓,根據(jù)等體積法計(jì)算出球心到平面的距離,由此求解出截面圓的半徑,從而截面面積可求.【詳解】如圖所示:設(shè)內(nèi)切球球心為,到平面的距離為,截面圓的半徑為,因?yàn)閮?nèi)切球的半徑等于正方體棱長(zhǎng)的一半,所以球的半徑為,又因?yàn)椋?,又因?yàn)?,所以,所以,所以截面圓的半徑,所以截面圓的面積為.故選:A.【點(diǎn)睛】本題考查正方體的內(nèi)切球的特點(diǎn)以及球的截面面積的計(jì)算,難度一般.任何一個(gè)平面去截球,得到的截面一定是圓面,截面圓的半徑可通過(guò)球的半徑以及球心到截面的距離去計(jì)算.10、A【解析】

畫(huà)出不等式組表示的區(qū)域,求出其面積,再得到在區(qū)域內(nèi)的面積,根據(jù)幾何概型的公式,得到答案.【詳解】畫(huà)出所表示的區(qū)域,易知,所以的面積為,滿(mǎn)足不等式的點(diǎn),在區(qū)域內(nèi)是一個(gè)以原點(diǎn)為圓心,為半徑的圓面,其面積為,由幾何概型的公式可得其概率為,故選A項(xiàng).【點(diǎn)睛】本題考查由約束條件畫(huà)可行域,求幾何概型,屬于簡(jiǎn)單題.11、C【解析】

,,判斷其在內(nèi)的單調(diào)性即可.【詳解】解:根據(jù)題意在內(nèi)遞增,,是以為對(duì)稱(chēng)軸,開(kāi)口向下的拋物線,所以在上單調(diào)遞減,故選:C.【點(diǎn)睛】本題考查了利用隨機(jī)變量的分布列求隨機(jī)變量的期望與方差,屬于中檔題.12、C【解析】

①與點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,利用弧長(zhǎng)公式,可得結(jié)論;②當(dāng)在(或時(shí),與面所成角(或的正切值為最小,當(dāng)在時(shí),與面所成角的正切值為最大,可得正切值取值范圍是;③設(shè),,,則,即,可得在前后、左右、上下面上的正投影長(zhǎng),即可求出六個(gè)面上的正投影長(zhǎng)度之和.【詳解】如圖:①錯(cuò)誤,因?yàn)椋c點(diǎn)距離為的點(diǎn)形成以為圓心,半徑為的圓弧,長(zhǎng)度為;②正確,因?yàn)槊婷?,所以點(diǎn)必須在面對(duì)角線上運(yùn)動(dòng),當(dāng)在(或)時(shí),與面所成角(或)的正切值為最?。橄碌酌婷鎸?duì)角線的交點(diǎn)),當(dāng)在時(shí),與面所成角的正切值為最大,所以正切值取值范圍是;③正確,設(shè),則,即,在前后、左右、上下面上的正投影長(zhǎng)分別為,,,所以六個(gè)面上的正投影長(zhǎng)度之,當(dāng)且僅當(dāng)在時(shí)取等號(hào).故選:.【點(diǎn)睛】本題以命題的真假判斷為載體,考查了軌跡問(wèn)題、線面角、正投影等知識(shí)點(diǎn),綜合性強(qiáng),屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接根據(jù)集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,是基礎(chǔ)題.14、【解析】

根據(jù)函數(shù)圖象的平移變換公式求得變換后的函數(shù)解析式,再利用誘導(dǎo)公式求得滿(mǎn)足的方程,結(jié)合題中的范圍即可求解.【詳解】由函數(shù)圖象的平移變換公式可得,函數(shù)的圖象向右平移個(gè)單位后,得到的函數(shù)解析式為,因?yàn)楹瘮?shù),所以函數(shù)與函數(shù)的圖象重合,所以,即,因?yàn)?所以.故答案為:【點(diǎn)睛】本題考查函數(shù)圖象的平移變換和三角函數(shù)的誘導(dǎo)公式;誘導(dǎo)公式的靈活運(yùn)用是求解本題的關(guān)鍵;屬于中檔題.15、【解析】

試題分析:作出不等式組所表示的平面區(qū)域如圖,當(dāng)直線過(guò)點(diǎn)時(shí),最大,且考點(diǎn):線性規(guī)劃.16、3000【解析】

根據(jù)正態(tài)曲線的對(duì)稱(chēng)性求出,進(jìn)而可求出身高高于的高中男生人數(shù).【詳解】解:全市30000名高中男生的身高(單位:)服從正態(tài)分布,且,則,該市身高高于的高中男生人數(shù)大約為.故答案為:.【點(diǎn)睛】本題考查正態(tài)曲線的對(duì)稱(chēng)性的應(yīng)用,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)16.【解析】

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程即可;(2)利用極徑的幾何意義,聯(lián)立曲線,直線,直線的極坐標(biāo)方程,得出,利用三角形面積公式,結(jié)合正弦函數(shù)的性質(zhì),得出的面積最小值.【詳解】(1)曲線:,即化為直角坐標(biāo)方程為:;(2),即同理∴當(dāng)且僅當(dāng),即()時(shí)取等號(hào)即的面積最小值為16【點(diǎn)睛】本題主要考查了極坐標(biāo)方程化直角坐標(biāo)方程以及極坐標(biāo)的應(yīng)用,屬于中檔題.18、(1)(2)當(dāng)n為偶數(shù)時(shí),;當(dāng)n為奇數(shù)時(shí),.(3)【解析】

(1)根據(jù),討論與兩種情況,即可求得數(shù)列的通項(xiàng)公式;(2)由(1)利用遞推公式及累加法,即可求得當(dāng)n為奇數(shù)或偶數(shù)時(shí)的通項(xiàng)公式.也可利用數(shù)學(xué)歸納法,先猜想出通項(xiàng)公式,再用數(shù)學(xué)歸納法證明.(3)分類(lèi)討論,當(dāng)n為奇數(shù)或偶數(shù)時(shí),分別求得的最大值,即可求得的取值范圍.【詳解】(1)由題意可知,.當(dāng)時(shí),,當(dāng)時(shí),也滿(mǎn)足上式.所以.(2)解法一:由(1)可知,即.當(dāng)時(shí),,①當(dāng)時(shí),,所以,②當(dāng)時(shí),,③當(dāng)時(shí),,所以,④……當(dāng)時(shí),n為偶數(shù)當(dāng)時(shí),n為偶數(shù)所以以上個(gè)式子相加,得.又,所以當(dāng)n為偶數(shù)時(shí),.同理,當(dāng)n為奇數(shù)時(shí),,所以,當(dāng)n為奇數(shù)時(shí),.解法二:猜測(cè):當(dāng)n為奇數(shù)時(shí),.猜測(cè):當(dāng)n為偶數(shù)時(shí),.以下用數(shù)學(xué)歸納法證明:,命題成立;假設(shè)當(dāng)時(shí),命題成立;當(dāng)n為奇數(shù)時(shí),,當(dāng)時(shí),n為偶數(shù),由得故,時(shí),命題也成立.綜上可知,當(dāng)n為奇數(shù)時(shí)同理,當(dāng)n為偶數(shù)時(shí),命題仍成立.(3)由(2)可知.①當(dāng)n為偶數(shù)時(shí),,所以隨n的增大而減小從而當(dāng)n為偶數(shù)時(shí),的最大值是.②當(dāng)n為奇數(shù)時(shí),,所以隨n的增大而增大,且.綜上,的最大值是1.因此,若對(duì)于任意的,不等式恒成立,只需,故實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查了累加法求數(shù)列通項(xiàng)公式的應(yīng)用,分類(lèi)討論奇偶項(xiàng)的通項(xiàng)公式及求和方法,數(shù)學(xué)歸納法證明數(shù)列的應(yīng)用,數(shù)列的單調(diào)性及參數(shù)的取值范圍,屬于難題.19、(1)(2)詳見(jiàn)解析【解析】

(1)將原不等式轉(zhuǎn)化為,構(gòu)造函數(shù),求得的最大值即可;

(2)首先通過(guò)求導(dǎo)判斷的單調(diào)區(qū)間,考查兩根的取值范圍,再構(gòu)造函數(shù),將問(wèn)題轉(zhuǎn)化為證明,探究在區(qū)間內(nèi)的最大值即可得證.【詳解】解:(1)由,即,即,令,則只需,,令,得,在上單調(diào)遞增,在上單調(diào)遞減,,的取值范圍是;(2)證明:不妨設(shè),當(dāng)時(shí),單調(diào)遞增,當(dāng)時(shí),單調(diào)遞減,,當(dāng)時(shí),,,要證,即證,由在上單調(diào)遞增,只需證明,由,只需證明,令,,只需證明,易知,由,故,,從而在上單調(diào)遞增,由,故當(dāng)時(shí),,故,證畢.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)單調(diào)性,最值等,關(guān)鍵是要對(duì)問(wèn)題進(jìn)行轉(zhuǎn)化,比如把恒成立問(wèn)題轉(zhuǎn)化為最值問(wèn)題,把根的個(gè)數(shù)問(wèn)題轉(zhuǎn)化為圖像的交點(diǎn)個(gè)數(shù),進(jìn)而轉(zhuǎn)化為證明不等式的問(wèn)題,屬難題.20、(1).(2).【解析】分析:(1)直接建立空間直角坐標(biāo)系,然后求出面的法向量和已知線的向量,再結(jié)合向量的夾角公式求解即可;(2)先分別得出兩個(gè)面的法向量,然后根據(jù)向量交角公式求解即可.詳解:()∵是矩形,∴,又∵平面,∴,,即,,兩兩垂直,∴以為原點(diǎn),,,分別為軸,軸,軸建立如圖空間直角坐標(biāo)系,由,,得,,,,,,則,,,設(shè)平面的一個(gè)法向量為,則,即,令,得,,∴,∴,故與平面所成角的正弦值為

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論