版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
湖南省株洲市茶陵縣茶陵三中2024屆高一下數(shù)學(xué)期末考試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知向量滿足.為坐標(biāo)原點(diǎn),.曲線,區(qū)域.若是兩段分離的曲線,則()A. B. C. D.2.設(shè),則比多了()項(xiàng)A. B. C. D.3.已知三角形為等邊三角形,,設(shè)點(diǎn)滿足,若,則()A. B. C. D.4.三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23,VC=1,則二面角V-AB-CA.30° B.45° C.60° D.90°5.在三棱錐中,平面,,,點(diǎn)M為內(nèi)切圓的圓心,若,則三棱錐的外接球的表面積為()A. B. C. D.6.某防疫站對學(xué)生進(jìn)行身體健康調(diào)查,與采用分層抽樣的辦法抽取樣本.某中學(xué)共有學(xué)生2000名,抽取了一個容量為200的樣本,樣本中男生103人,則該中學(xué)共有女生()A.1030人 B.97人 C.950人 D.970人7.如圖,為了測量山坡上燈塔的高度,某人從高為的樓的底部處和樓頂處分別測得仰角為,,若山坡高為,則燈塔高度是()A. B. C. D.8.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上是單調(diào)遞減的是()A.y=-cosx B.y=lgx9.若變量滿足約束條件則的最大值為()A.4 B.3 C.2 D.110.在中,角A、B、C所對的邊分別為a、b、c,且若,則的形狀是()A.等腰三角形 B.直角三角形 C.等邊三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.12.把函數(shù)的圖像上各點(diǎn)向右平移個單位,再把橫坐標(biāo)變?yōu)樵瓉淼囊话?,縱坐標(biāo)擴(kuò)大到原來的4倍,則所得的函數(shù)的對稱中心坐標(biāo)為________13.若是三角形的內(nèi)角,且,則等于_____________.14.?dāng)?shù)列中,,以后各項(xiàng)由公式給出,則等于_____.15.如圖,在圓心角為,半徑為2的扇形AOB中任取一點(diǎn)P,則的概率為________.16.設(shè)數(shù)列的通項(xiàng)公式,則數(shù)列的前20項(xiàng)和為____________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知三角形的三個頂點(diǎn),,.(1)求線段的中線所在直線方程;(2)求邊上的高所在的直線方程.18.如圖,求陰影部分繞旋轉(zhuǎn)一周所形成的幾何體的表面積和體積.19.已知向量滿足,且向量與的夾角為.(1)求的值;(2)求.20.已知在三棱錐S-ABC中,∠ACB=,又SA⊥平面ABC,AD⊥SC于D,求證:AD⊥平面SBC.21.已知角、的頂點(diǎn)在平面直角坐標(biāo)系的原點(diǎn),始邊與軸正半軸重合,且角的終邊與單位圓(圓心在原點(diǎn),半徑為1的圓)的交點(diǎn)位于第二象限,角的終邊和單位圓的交點(diǎn)位于第三象限,若點(diǎn)的橫坐標(biāo)為,點(diǎn)的縱坐標(biāo)為.(1)求、的值;(2)若,求的值.(結(jié)果用反三角函數(shù)值表示)
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
不妨設(shè),由得出點(diǎn)的坐標(biāo),根據(jù)題意得出曲線表示一個以為圓心,為半徑的圓,區(qū)域表示以為圓心,內(nèi)徑為,外徑為的圓環(huán),再由是兩段分離的曲線,結(jié)合圓與圓的位置關(guān)系得出的取值.【詳解】不妨設(shè)則,所以,則曲線表示一個以為圓心,為半徑的圓因?yàn)閰^(qū)域,所以區(qū)域表示以為圓心,內(nèi)徑為,外徑為的圓環(huán)由于是兩段分離的曲線,則該兩段曲線分別為上圖中的要使得是分離的曲線,則所在的圓與圓相交于不同的兩點(diǎn)所以,即故選:A【點(diǎn)睛】本題主要考查了集合的應(yīng)用以及由圓與圓的位置關(guān)系確定參數(shù)的范圍,屬于中檔題.2、C【解析】
可知中共有項(xiàng),然后將中的項(xiàng)數(shù)減去中的項(xiàng)數(shù)即可得出答案.【詳解】,則中共有項(xiàng),所以,比多了的項(xiàng)數(shù)為.故選:C.【點(diǎn)睛】本題考查數(shù)學(xué)歸納法的應(yīng)用,解題的關(guān)鍵就是計(jì)算出等式中的項(xiàng)數(shù),考查分析問題和解決問題的能力,屬于中等題.3、D【解析】
用三角形的三邊表示出,再根據(jù)已知的邊的關(guān)系可得到關(guān)于的方程,解方程即得?!驹斀狻坑深}得,,,整理得,化簡得,解得.故選:D【點(diǎn)睛】本題考查平面向量的線性運(yùn)算及平面向量基本定理,是常考題型。4、C【解析】
取AB中點(diǎn)O,連結(jié)VO,CO,由等腰三角形的性質(zhì)可得,VO⊥AB,CO⊥AB,∠VOC是二面角V-AB-C的平面角,由此利用余弦定理能求出二面角的平面角V-AB-C的度數(shù).【詳解】取AB中點(diǎn)O,連結(jié)VO,CO,∴三棱錐V-ABC中,VA=VB=AC=BC=2,AB=23所以VO⊥AB,CO⊥AB∴∠VOC是二面角V-AB-C的平面角,VO=VCO=B∴cos∴∠VOC=60∴二面角V-AB-C的平面角的度數(shù)為60°【點(diǎn)睛】本題主要考查三棱錐的性質(zhì)、二面角的求法,屬于中檔題.求二面角的大小既能考查線線垂直關(guān)系,又能考查線面垂直關(guān)系,同時可以考查學(xué)生的計(jì)算能力,是高考命題的熱點(diǎn),求二面角的方法通常有兩個思路:一是利用空間向量,建立坐標(biāo)系,這種方法優(yōu)點(diǎn)是思路清晰、方法明確,但是計(jì)算量較大;二是傳統(tǒng)方法,求出二面角平面角的大小,這種解法的關(guān)鍵是找到平面角.5、C【解析】
求三棱錐的外接球的表面積即求球的半徑,則球心到底面的距離為,根據(jù)正切和MA的長求PA,再和MA的長即可通過勾股定理求出球半徑R,則表面積.【詳解】取BC的中點(diǎn)E,連接AE(圖略).因?yàn)椋渣c(diǎn)M在AE上,因?yàn)?,,所以,則的面積為,解得,所以.因?yàn)椋?設(shè)的外接圓的半徑為r,則,解得.因?yàn)槠矫鍭BC,所以三棱錐的外接球的半徑為,故三棱錐P-ABC的外接球的表面積為.【點(diǎn)睛】此題關(guān)鍵點(diǎn)通過題干信息畫出圖像,平面ABC和底面的內(nèi)切圓圓心確定球心的位置,根據(jù)幾何關(guān)系求解即可,屬于三棱錐求外接球半徑基礎(chǔ)題目.6、D【解析】由分層抽樣的辦法可知在名學(xué)生中抽取的男生有,故女生人數(shù)為,應(yīng)選答案D.7、B【解析】
過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),在中由正弦定理求得,在中求得,從而求得燈塔的高度.【詳解】過點(diǎn)作于點(diǎn),過點(diǎn)作于點(diǎn),如圖所示,在中,由正弦定理得,,即,,在中,,又山高為,則燈塔的高度是.故選.【點(diǎn)睛】本題考查了解三角形的應(yīng)用和正弦定理,考查了轉(zhuǎn)化思想,屬中檔題.8、C【解析】
先判斷各函數(shù)奇偶性,再找單調(diào)性符合題意的即可?!驹斀狻渴紫瓤梢耘袛噙x項(xiàng)D,y=e然后,由圖像可知,y=-cosx在(0,+∞)上不單調(diào),y=lg只有選項(xiàng)C:y=1-x【點(diǎn)睛】本題主要考查函數(shù)的性質(zhì),奇偶性和單調(diào)性。9、B【解析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值.【詳解】作出約束條件,所對應(yīng)的可行域(如圖陰影部分)變形目標(biāo)函數(shù)可得,平移直線可知,當(dāng)直線經(jīng)過點(diǎn)時,直線的截距最小,代值計(jì)算可得取最大值故選B.【點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對應(yīng)的最優(yōu)解對應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.10、C【解析】
直接利用余弦定理的應(yīng)用求出A的值,進(jìn)一步利用正弦定理得到:b=c,最后判斷出三角形的形狀.【詳解】在△ABC中,角A、B、C所對的邊分別為a、b、c,且b2+c2=a2+bc.則:,由于:0<A<π,故:A.由于:sinBsinC=sin2A,利用正弦定理得:bc=a2,所以:b2+c2﹣2bc=0,故:b=c,所以:△ABC為等邊三角形.故選C.【點(diǎn)睛】本題考查了正弦定理和余弦定理及三角形面積公式的應(yīng)用,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)化能力,屬于基礎(chǔ)題型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因?yàn)?,所以,即;取連續(xù)的有限項(xiàng)構(gòu)成數(shù)列,不妨令,則,且,則此時必為整數(shù);當(dāng)時,,不符合;當(dāng)時,,符合,此時公比;當(dāng)時,,不符合;當(dāng)時,,不符合;故:公比.【點(diǎn)睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進(jìn)行分類,可先通過列舉的方式找到思路,然后再準(zhǔn)確分析.12、,【解析】
根據(jù)三角函數(shù)的圖象變換,求得函數(shù)的解析式,進(jìn)而求得函數(shù)的對稱中心,得到答案.【詳解】由題意,把函數(shù)的圖像上各點(diǎn)向右平移個單位,可得,再把圖象上點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼囊话?,可得,把函?shù)縱坐標(biāo)擴(kuò)大到原來的4倍,可得,令,解得,所以函數(shù)的對稱中心為.故答案為:.【點(diǎn)睛】本題主要考查了三角函數(shù)的圖象變換,以及三角函數(shù)的對稱中心的求解,其中解答中熟練三角函數(shù)的圖象變換,以及三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】∵是三角形的內(nèi)角,且,∴故答案為點(diǎn)睛:本題是一道易錯題,在上,,分兩種情況:若,則;若,則有兩種情況銳角或鈍角.14、【解析】
可以利用前項(xiàng)的積與前項(xiàng)的積的關(guān)系,分別求得第三項(xiàng)和第五項(xiàng),即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當(dāng)時,;當(dāng)時,,則,當(dāng)時,;當(dāng)時,,則,所以.【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
根據(jù)題意,建立坐標(biāo)系,求出圓心角扇形區(qū)域的面積,進(jìn)而設(shè),由數(shù)量積的計(jì)算公式可得滿足的區(qū)域,求出其面積,代入幾何概率的計(jì)算公式即可求解.【詳解】根據(jù)題意,建立如圖的坐標(biāo)系,則則扇形的面積為設(shè)若,則有,即;則滿足的區(qū)域?yàn)槿鐖D的陰影區(qū)域,直線與弧的交點(diǎn)為,易得的坐標(biāo)為,則陰影區(qū)域的面積為故的概率故答案為:【點(diǎn)睛】本題考查幾何概型,涉及數(shù)量積的計(jì)算,屬于綜合題.16、【解析】
對去絕對值,得,再求得的前項(xiàng)和,代入=20即可求解【詳解】由題的前n項(xiàng)和為的前20項(xiàng)和,代入可得.故答案為:260【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和,去絕對值是關(guān)鍵,考查計(jì)算能力,是基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2).【解析】
(1)先求出BC中點(diǎn)的坐標(biāo),再求BC的中線所在直線的方程;(2)先求出AB的斜率,再求出邊上的高所在的直線方程.【詳解】(1)由題得BC的中點(diǎn)D的坐標(biāo)為(2,-1),所以,所以線段的中線AD所在直線方程為即.(2)由題得,所以AB邊上的高所在直線方程為,即.【點(diǎn)睛】本題主要考查直線方程的求法,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.18、,【解析】
由圖形知旋轉(zhuǎn)后的幾何體是一個圓臺,從上面挖去一個半球后剩余部分,根據(jù)圖形中的數(shù)據(jù)可求出其表面積和體積.【詳解】由題意知,所求旋轉(zhuǎn)體的表面積由三部分組成:圓臺下底面、側(cè)面和一個半球面,而半球面的表面積,圓臺的底面積,圓臺的側(cè)面積,所以所求幾何體的表面積;圓臺的體積,半球的體積,所以,旋轉(zhuǎn)體的體積為,故得解.【點(diǎn)睛】本題考查組合體的表面積、體積,還考查了空間想象能力,能想象出旋轉(zhuǎn)后的旋轉(zhuǎn)體的構(gòu)成是本題的關(guān)鍵,屬于中檔題.19、(1)(2)【解析】
(1)根據(jù),得到,再由題中數(shù)據(jù),即可求出結(jié)果;(2)根據(jù)向量數(shù)量積的運(yùn)算法則,以及(1)的結(jié)果,即可得出結(jié)果.【詳解】解:(1)因?yàn)?,所以,?因?yàn)?,且向量與的夾角為,所以,即.(2)由(1)可得.【點(diǎn)睛】本題主要考查平面向量的數(shù)量積,熟記模的計(jì)算公式,以及向量數(shù)量積的運(yùn)算法則即可,屬于常考題型.20、證明見解析【解析】
先由SA⊥面ABC,得BC⊥SA,又BC⊥AC,得BC⊥面SAC,故BC⊥AD,又SC⊥AD,所以AD⊥面SBC.【詳解】證明:因?yàn)镾A⊥面ABC,BC面ABC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 安徽公安職業(yè)學(xué)院《大學(xué)英語B1》2024-2025學(xué)年期末試卷(A卷)
- 2026年鋁行業(yè)專題報(bào)告:供給有約束需求有韌性鋁價中樞或上移
- 廣東省廣州市越秀區(qū)2022-2023學(xué)年八年級下學(xué)期期末歷史試題(含答案)
- 2026年環(huán)境工程師職稱考試環(huán)境污染防治技術(shù)操作題集
- 日常知識競賽試題及答案
- 倪邱鎮(zhèn)中心衛(wèi)生院網(wǎng)絡(luò)意識形態(tài)工作專題考核試卷及答案
- CCAA - 2024年08月質(zhì)量管理體系基礎(chǔ)答案及解析 - 詳解版(65題)
- 2025年上海海洋大學(xué)馬克思主義基本原理概論期末考試模擬題含答案解析(奪冠)
- 雨課堂學(xué)堂在線學(xué)堂云《俄漢翻譯(上海外國語)》單元測試考核答案
- 2026年湖南機(jī)電職業(yè)技術(shù)學(xué)院單招職業(yè)傾向性測試題庫附答案解析
- GB 4053.2-2025固定式金屬梯及平臺安全要求第2部分:斜梯
- 2026屆上海市長寧區(qū)市級名校高一上數(shù)學(xué)期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2026年煙草公司筆試綜合試題及考點(diǎn)實(shí)操指引含答案
- 九年級寒假期末總結(jié)課件
- 壓鑄機(jī)作業(yè)人員安全培訓(xùn)課件
- 新產(chǎn)品研發(fā)質(zhì)量管控流程詳解
- 我的Python世界(玩Minecraft我的世界學(xué)Python編程)
- 失血性休克指南2025版
- 座椅相關(guān)測試題及答案
- 2025年6月青少年軟件編程Scratch圖形化等級考試三級真題(含答案和解析)
- 旋壓式止血帶課件
評論
0/150
提交評論