湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第1頁
湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第2頁
湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第3頁
湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第4頁
湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

湖北省隨州市普通高中2024年高一下數(shù)學(xué)期末統(tǒng)考模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為2,且該塔形的表面積(含最底層正方體的底面面積)超過39,則該塔形中正方體的個(gè)數(shù)至少是A.4 B.5 C.6 D.72.已知某區(qū)中小學(xué)學(xué)生人數(shù)如圖所示,為了解學(xué)生參加社會(huì)實(shí)踐活動(dòng)的意向,擬采用分層抽樣的方法來進(jìn)行調(diào)查。若高中需抽取20名學(xué)生,則小學(xué)與初中共需抽取的人數(shù)為()A.30 B.40 C.70 D.903.在△中,已知,,,則△的面積等于()A.6 B.12 C. D.4.已知在中,為線段上一點(diǎn),且,若,則()A. B. C. D.5.已知函數(shù)的部分圖象如圖所示,則函數(shù)的表達(dá)式是()A. B.C. D.6.某賽季中,甲?乙兩名籃球隊(duì)員各場(chǎng)比賽的得分莖葉圖如圖所示,若甲得分的眾數(shù)為15,乙得分的中位數(shù)為13,則()A.15 B.16 C.17 D.187.若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系的說法正確的是()A. B.、異面 C. D.、沒有公共點(diǎn)8.若,則()A. B. C. D.9.向量,,若,則()A.2 B. C. D.10.將邊長(zhǎng)為2的正方形沿對(duì)角線折起,則三棱錐的外接球表面積為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,則的值為________12.若各項(xiàng)均為正數(shù)的等比數(shù)列,,則它的前項(xiàng)和為______.13.已知正四棱錐的底面邊長(zhǎng)為,高為,則該四棱錐的側(cè)面積是______________14.已知平面向量,若,則________15.與30°角終邊相同的角_____________.16.已知向量(1,x2),(﹣2,y2﹣2),若向量,共線,則xy的最大值為_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標(biāo)系中,點(diǎn),,銳角的終邊與單位圓O交于點(diǎn)P.(Ⅰ)當(dāng)時(shí),求的值;(Ⅱ)在軸上是否存在定點(diǎn)M,使得恒成立?若存在,求出點(diǎn)M坐標(biāo);若不存在,說明理由.18.函數(shù).(1)求函數(shù)的圖象的對(duì)稱軸方程;(2)當(dāng)時(shí),不等式恒成立,求m的取值范圍.19.如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四邊形BFED為矩形,平面BFED⊥平面ABCD,BF=1.(1)求證:AD⊥平面BFED;(2)點(diǎn)P在線段EF上運(yùn)動(dòng),設(shè)平面PAB與平面ADE所成銳二面角為θ,試求θ的最小值.20.已知是等差數(shù)列,滿足,,數(shù)列滿足,,且是等比數(shù)列.(1)求數(shù)列和的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.21.如圖,在三棱錐中,平面平面,,點(diǎn),,分別為線段,,的中點(diǎn),點(diǎn)是線段的中點(diǎn).求證:(1)平面;(2).

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】

根據(jù)相鄰正方體的關(guān)系得出個(gè)正方體的棱長(zhǎng)為等比數(shù)列,求出塔形表面積的通項(xiàng)公式,令,即可得出的范圍.【詳解】設(shè)從最底層開始的第層的正方體棱長(zhǎng)為,則是以2為首項(xiàng),以為公比的等比數(shù)列.∴是以4為首項(xiàng),以為公比的等比數(shù)列∴塔形的表面積為.令,解得.∴塔形正方體最少為6個(gè).故選C.【點(diǎn)睛】此題考查了立體圖形的表面積問題以及等比數(shù)列求和公式的應(yīng)用.解決本題的關(guān)鍵是得到上下正方體的棱長(zhǎng)之間的關(guān)系,從而即可得出依次排列的正方體的一個(gè)面的面積,這里還要注意把最下面的正方體看做是6個(gè)面之外,上面的正方體都是露出了4個(gè)面.2、C【解析】

根據(jù)高中抽取的人數(shù)和高中總?cè)藬?shù)計(jì)算可得抽樣比;利用小學(xué)和初中總?cè)藬?shù)乘以抽樣比即可得到結(jié)果.【詳解】由題意可得,抽樣比為:則小學(xué)和初中共抽取:人本題正確選項(xiàng):【點(diǎn)睛】本題考查分層抽樣中樣本數(shù)量的求解,關(guān)鍵是能夠明確分層抽樣原則,準(zhǔn)確求解出抽樣比,屬于基礎(chǔ)題.3、C【解析】

通過A角的面積公式,代入數(shù)據(jù)易得面積.【詳解】故選C【點(diǎn)睛】此題考查三角形的面積公式,代入數(shù)據(jù)即可,屬于簡(jiǎn)單題目.4、C【解析】

首先,由已知條件可知,再有,這樣可用表示出.【詳解】∵,∴,,∴,∴.故選C.【點(diǎn)睛】本題考查平面向量基本定理,解題時(shí)用向量加減法表示出,然后用基底表示即可.5、D【解析】

根據(jù)函數(shù)的最值求得,根據(jù)函數(shù)的周期求得,根據(jù)函數(shù)圖像上一點(diǎn)的坐標(biāo)求得,由此求得函數(shù)的解析式.【詳解】由題圖可知,且即,所以,將點(diǎn)的坐標(biāo)代入函數(shù),得,即,因?yàn)?,所以,所以函?shù)的表達(dá)式為.故選D.【點(diǎn)睛】本小題主要考查根據(jù)三角函數(shù)圖像求三角函數(shù)的解析式,屬于基礎(chǔ)題.6、A【解析】

由圖可得出,然后可算出答案【詳解】因?yàn)榧椎梅值谋姅?shù)為15,所以由莖葉圖可知乙得分?jǐn)?shù)據(jù)有7個(gè),乙得分的中位數(shù)為13,所以所以故選:A【點(diǎn)睛】本題考查的是莖葉圖的知識(shí),較簡(jiǎn)單7、D【解析】

根據(jù)條件知:關(guān)于直線、的位置關(guān)系異面或者平行,故沒有公共點(diǎn).【詳解】若平面平面,直線,直線,則關(guān)于直線、的位置關(guān)系是異面或者平行,所以、沒有公共點(diǎn).故答案選D【點(diǎn)睛】本題考查了直線,平面的位置關(guān)系,意在考查學(xué)生的空間想象能力.8、C【解析】

由及即可得解.【詳解】由,可得.故選C.【點(diǎn)睛】本題主要考查了同角三角函數(shù)的基本關(guān)系及二倍角公式,屬于基礎(chǔ)題.9、C【解析】試題分析:,,得得,故選C.考點(diǎn):向量的垂直運(yùn)算,向量的坐標(biāo)運(yùn)算.10、C【解析】

根據(jù)題意,畫出圖形,結(jié)合圖形得出三棱錐的外接球直徑,從而求出外接球的表面積,得到答案.【詳解】由題意,將邊長(zhǎng)為2的正方形沿對(duì)角線折起,得到三棱錐,如圖所示,則,三棱錐的外接球直徑為,即半徑為,外接球的表面積為,故選C.【點(diǎn)睛】本題主要考查了平面圖形的折疊問題,以及外接球的表面積的計(jì)算,著重考查了空間想象能力,以及推理與計(jì)算能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由,得到,由三角形的內(nèi)角和,求出,再由正弦定理求出的值.【詳解】因?yàn)椋?,所以,所以,在中,由正弦定理得,所?【點(diǎn)睛】本題考查正弦定理解三角形,屬于簡(jiǎn)單題.12、【解析】

利用等比數(shù)列的通項(xiàng)公式求出公比,由此能求出它的前項(xiàng)和.【詳解】設(shè)各項(xiàng)均為正數(shù)的等比數(shù)列的公比為,由,得,且,解得,它的前項(xiàng)和為.故答案:.【點(diǎn)睛】本題考查等比數(shù)列的前項(xiàng)和的求法,考查等比數(shù)列的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.13、【解析】四棱錐的側(cè)面積是14、1【解析】

根據(jù)即可得出,解出即可.【詳解】∵;∴;解得,故答案為1.【點(diǎn)睛】本題主要考查向量坐標(biāo)的概念,以及平行向量的坐標(biāo)關(guān)系,屬于基礎(chǔ)題.15、【解析】

根據(jù)終邊相同的角的定義可得答案.【詳解】與30°角終邊相同的角,故答案為:【點(diǎn)睛】本題考查了終邊相同的角的定義,屬于基礎(chǔ)題.16、【解析】

由題意利用兩個(gè)向量共線的性質(zhì),兩個(gè)向量坐標(biāo)形式的運(yùn)算,可得,再利用基本不等式,求得的最大值.【詳解】向量,,若向量,共線,則,,即,當(dāng)且僅當(dāng),時(shí),取等號(hào).故的最大值為,故答案為:.【點(diǎn)睛】本題主要考查兩個(gè)向量共線的性質(zhì),考查兩個(gè)向量坐標(biāo)形式的運(yùn)算和基本不等式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)設(shè)點(diǎn),求得向量的坐標(biāo),根據(jù)向量的數(shù)量積的運(yùn)算,求得,即可求得答案.(Ⅱ)設(shè)M點(diǎn)的坐標(biāo)為,把恒成立問題轉(zhuǎn)化為恒成立,列出方程組,即可求解.【詳解】(Ⅰ),,(Ⅱ)設(shè)M點(diǎn)的坐標(biāo)為,則,,,.【點(diǎn)睛】本題主要考查了向量的坐標(biāo)運(yùn)算,以及向量的數(shù)量積的應(yīng)用和恒成立問題的求解,其中解答中合理利用向量的坐標(biāo)運(yùn)算及向量的數(shù)量積的運(yùn)算,以及轉(zhuǎn)化等式的恒成立問題,列出相應(yīng)的方程組是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.18、(1),(2)【解析】

(1)首先利用二倍角公式及兩角和差的正弦公式化簡(jiǎn)得到,再根據(jù)正弦函數(shù)的性質(zhì)求出函數(shù)的對(duì)稱軸;(2)由,求出的值域,設(shè),則.則當(dāng)時(shí),不等式恒成立,等價(jià)于對(duì)于恒成立,則解得即可;【詳解】解:(1).即令,解得,則圖象的對(duì)稱軸方程為,(2)當(dāng)時(shí),,則,從而,設(shè),則.當(dāng)時(shí),不等式恒成立,等價(jià)于對(duì)于恒成立,則解得.故m的取值范圍為.【點(diǎn)睛】本題考查兩角和與差的正弦公式,考查三角變換與輔助角公式的應(yīng)用,突出考查正弦函數(shù)的性質(zhì)以及一元二次不等式在給定區(qū)間上恒成立問題,屬于中檔題.19、(1)證明見解析(2)θ最小值為60°【解析】

(1)在梯形ABCD中,利用勾股定理,得到AD⊥BD,再結(jié)合面面垂直的判定,證得DE⊥平面ABCD,即可證得AD⊥平面BFED;(2)以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,求得平面PAB與平面ADE法向量,利用向量的夾角公式,即可求解?!驹斀狻浚?)證明:在梯形ABCD中,∵AB∥CD,AD=DC=CB=1,∠BCD=120°,∴AB=2.∴BD2=AB2+AD2-2AB·AD·cos60°=3.∴AB2=AD2+BD2,∴AD⊥BD.∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,DE?平面BFED,DE⊥DB,∴DE⊥平面ABCD,∴DE⊥AD,又DE∩BD=D,∴AD⊥平面BFED.(1)由(1)知,直線AD,BD,ED兩兩垂直,故以D為原點(diǎn),直線DA,DB,DE分別為x軸,y軸,z軸建立如圖所示的空間直角坐標(biāo)系,令EP=λ(0≤λ≤),則D(0,0,0),A(1,0,0),B(0,,0),P(0,λ,1),所以=(-1,,0),=(0,λ-,1).設(shè)n1=(x,y,z)為平面PAB的法向量,由得,取y=1,則n1=(,1,-λ).因?yàn)閚2=(0,1,0)是平面ADE的一個(gè)法向量,所以cosθ===.因?yàn)?≤λ≤,所以當(dāng)λ=時(shí),cosθ有最大值,所以θ的最小值為60°.【點(diǎn)睛】本題考查了線面垂直關(guān)系的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20、(1),;(2)【解析】試題分析:(1)利用等差數(shù)列,等比數(shù)列的通項(xiàng)公式先求得公差和公比,即得到結(jié)論;(2)利用分組求和法,由等差數(shù)列及等比數(shù)列的前n項(xiàng)和公式即可求得數(shù)列前n項(xiàng)和.試題解析:(Ⅰ)設(shè)等差數(shù)列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設(shè)等比數(shù)列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數(shù)列{1n}的前n項(xiàng)和為n(n+1),數(shù)列{2n﹣1}的前n項(xiàng)和為1×=2n﹣1,∴數(shù)列{bn}的前n項(xiàng)和為;考點(diǎn):1.等差數(shù)列性質(zhì)的綜合應(yīng)用;2.等比數(shù)列性質(zhì)的綜合應(yīng)用;1.數(shù)列求和.21、(1)見解析;(2)見解析【解析】

(1)連AF交BE于Q,連QO,推導(dǎo)出Q是△PAB的重心,從而FG∥QO,由此能證明FG∥平面EBO.(2)推導(dǎo)出BO⊥AC,從而BO⊥面PAC,進(jìn)而BO⊥PA,再求出OE⊥PA,由此能證明PA⊥平面EBO,利用線面垂直的性質(zhì)可證PA⊥BE.【詳解】(1)連接AF交BE于Q,連接QO,因?yàn)镋,F(xiàn)分別為邊PA,PB的中點(diǎn),所以Q為△PAB的重心,可得:2,又因?yàn)镺為線段AC的中點(diǎn),G是線段CO的中點(diǎn),所以2,于是,所以FG∥QO,因?yàn)镕G?平面EBO,QO?平面EBO,所以FG∥平面EBO.(2)因?yàn)镺為邊

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論