2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第1頁
2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第2頁
2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第3頁
2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第4頁
2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學(xué)年陜西省延安市第一中學(xué)高一下數(shù)學(xué)期末調(diào)研模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)點是函數(shù)圖象上的任意一點,點滿足,則的最小值為()A. B. C. D.2.在數(shù)列中,,且數(shù)列是等比數(shù)列,其公比,則數(shù)列的最大項等于()A. B. C.或 D.3.若函數(shù)則()A. B. C. D.4.圖1是我國古代數(shù)學(xué)家趙爽創(chuàng)制的一幅“勾股圓方圖”(又稱“趙爽弦圖”),它是由四個全等的直角三角形與中間的一個小正方形拼成的一個大正方形.受其啟發(fā),某同學(xué)設(shè)計了一個圖形,它是由三個全等的鈍角三角形與中間一個小正三角形拼成一個大正三角形,如圖2所示,若,,則線段的長為()A.3 B.3.5 C.4 D.4.55.執(zhí)行如圖所示的程序框圖,則輸出的的值為()A.3 B.4 C.5 D.66.下列命題中正確的是()A.如果兩條直線都平行于同一個平面,那么這兩條直線互相平行B.過一條直線有且只有一個平面與已知平面垂直C.如果一條直線平行于一個平面內(nèi)的一條直線,那么這條直線平行于這個平面D.如果兩條直線都垂直于同一平面,那么這兩條直線共面7.已知點,點滿足線性約束條件O為坐標(biāo)原點,那么的最小值是A. B. C. D.8.平面與平面平行的充分條件可以是()A.內(nèi)有無窮多條直線都與平行B.直線,,且直線a不在內(nèi),也不在內(nèi)C.直線,直線,且,D.內(nèi)的任何一條直線都與平行9.?dāng)S一枚均勻的硬幣,如果連續(xù)拋擲2020次,那么拋擲第2019次時出現(xiàn)正面向上的概率是()A. B. C. D.10.下列函數(shù),是偶函數(shù)的為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.渦陽一中某班對第二次質(zhì)量檢測成績進行分析,利用隨機數(shù)表法抽取個樣本時,先將個同學(xué)按、、、、進行編號,然后從隨機數(shù)表第行第列的數(shù)開始向右讀(注:如表為隨機數(shù)表的第行和第行),則選出的第個個體是______.12.已知圓Ω過點A(5,1),B(5,3),C(﹣1,1),則圓Ω的圓心到直線l:x﹣2y+1=0的距離為_____.13.在邊長為2的正△ABC所在平面內(nèi),以A為圓心,為半徑畫弧,分別交AB,AC于D,E.若在△ABC內(nèi)任丟一粒豆子,則豆子落在扇形ADE內(nèi)的概率是________.14.如圖,為內(nèi)一點,且,延長交于點,若,則實數(shù)的值為_______.15.已知向量,若向量與垂直,則等于_______.16.已知兩條直線,將圓及其內(nèi)部劃分成三個部分,則的取值范圍是_______;若劃分成的三個部分中有兩部分的面積相等,則的取值有_______種可能.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求函數(shù)的最小正周期及值域;(2)求方程的解.18.已知函數(shù),(1)求的值;(2)求的單調(diào)遞增區(qū)間.19.在等差數(shù)列中,.(Ⅰ)求的通項公式;(Ⅱ)求數(shù)列的前項和.20.如圖,四棱錐,平面ABCD,四邊形ABCD是直角梯形,,,,E為PB中點.(1)求證:平面PCD;(2)求證:.21.如圖,在四棱錐P‐ABCD中,四邊形ABCD為正方形,PA⊥平面ABCD,E為PD的中點.求證:(1)PB∥平面AEC;(2)平面PCD⊥平面PAD.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

函數(shù)表示圓位于x軸下面的部分.利用點到直線的距離公式,求出最小值.【詳解】函數(shù)化簡得.圓心坐標(biāo),半徑為2.所以【點睛】本題考查點到直線的距離公式,屬于基礎(chǔ)題.2、C【解析】

在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,利用等比數(shù)列的通項公式可得:.可得,利用二次函數(shù)的單調(diào)性即可得出.【詳解】在數(shù)列中,,,且數(shù)列是等比數(shù)列,其公比,.,.由或8時,,或9時,,數(shù)列的最大項等于或.故選:C.【點睛】本題考查等比數(shù)列的通項公式、累乘法、二次函數(shù)的單調(diào)性,考查推理能力與計算能力,屬于中檔題.3、B【解析】

首先根據(jù)題意得到,再計算即可.【詳解】……,.故選:B【點睛】本題主要考查分段函數(shù)值的求法,同時考查了指數(shù)冪的運算,屬于簡單題.4、A【解析】

設(shè),可得,求得,在中,運用余弦定理,解方程可得所求值.【詳解】設(shè),可得,且,在中,可得,即為,化為,解得舍去),故選.【點睛】本題考查三角形的余弦定理,考查方程思想和運算能力,屬于基礎(chǔ)題.5、C【解析】

根據(jù)框圖模擬程序運算即可.【詳解】第一次執(zhí)行程序,,,繼續(xù)循環(huán),第二次執(zhí)行程序,,,,繼續(xù)循環(huán),第三次執(zhí)行程序,,,,繼續(xù)循環(huán),第四次執(zhí)行程序,,,,繼續(xù)循環(huán),第五次執(zhí)行程序,,,,跳出循環(huán),輸出,結(jié)束.故選C.【點睛】本題主要考查了程序框圖,涉及循環(huán)結(jié)構(gòu),解題關(guān)鍵注意何時跳出循環(huán),屬于中檔題.6、D【解析】

利用定理及特例法逐一判斷即可。【詳解】解:如果兩條直線都平行于同一個平面,那么這兩條直線相交、平行或異面,故A不正確;過一條直線有且只有一個平面與已知平面垂直,不正確.反例:如果該直線本身就垂直于已知平面的話,那么可以找到無數(shù)個平面與已知平面垂直,故B不正確;如果這兩條直線都在平面內(nèi)且平行,那么這直線不平行于這個平面,故C不正確;如果兩條直線都垂直于同一平面,則這兩條直線平行,所以這兩條直線共面,故D正確.故選:D.【點睛】本題主要考查了線線平行的判定,面面垂直的判定,線面平行的判定,線面垂直的性質(zhì),考查空間思維能力,屬于中檔題。7、D【解析】

點滿足線性約束條件∵令目標(biāo)函數(shù)畫出可行域如圖所示,聯(lián)立方程解得在點處取得最小值:故選D【點睛】此題主要考查簡單的線性規(guī)劃問題以及向量的內(nèi)積的問題,解決此題的關(guān)鍵是能夠找出目標(biāo)函數(shù).8、D【解析】

利用平面與平面平行的判定定理一一進行判斷,可得正確答案.【詳解】解:A選項,內(nèi)有無窮多條直線都與平行,并不能保證平面內(nèi)有兩條相交直線與平面平行,這無窮多條直線可以是一組平行線,故A錯誤;B選項,直線,,且直線a不在內(nèi),也不在內(nèi),直線a可以是平行平面與平面的相交直線,故不能保證平面與平面平行,故B錯誤;C選項,直線,直線,且,,當(dāng)直線,同樣不能保證平面與平面平行,故C錯誤;D選項,內(nèi)的任何一條直線都與平行,則內(nèi)至少有兩條相交直線與平面平行,故平面與平面平行;故選:D.【點睛】本題主要考查平面與平面平行的判斷,解題時要認真審題,熟練掌握面與平面平行的判定定理,注意空間思維能力的培養(yǎng).9、B【解析】

根據(jù)概率的性質(zhì)直接得到答案.【詳解】根據(jù)概率的性質(zhì)知:每次正面向上的概率為.故選:.【點睛】本題考查了概率的性質(zhì),屬于簡單題.10、B【解析】

逐項判斷各項的定義域是否關(guān)于原點對稱,再判斷是否滿足即可得解.【詳解】易知各選項的定義域均關(guān)于原點對稱.,故A錯誤;,故B正確;,故C錯誤;,故D錯誤.故選:B.【點睛】本題考查了誘導(dǎo)公式的應(yīng)用和函數(shù)奇偶性的判斷,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

根據(jù)隨機數(shù)法列出前個個體的編號,即可得出答案.【詳解】由隨機數(shù)法可知,前個個體的編號依次為、、、、、、,因此,第個個體是,故答案為.【點睛】本題考查隨機數(shù)法讀取樣本個體編號,讀取時要把握兩個原則:(1)看樣本編號最大數(shù)為幾位數(shù),讀取時就幾個數(shù)連著一起取;(2)不在編號范圍內(nèi)的號碼要去掉,重復(fù)的只能取第一次.12、【解析】

求得線段和線段的垂直平分線,求這兩條垂直平分線的交點即求得圓的圓心,在求的圓心到直線的距離.【詳解】∵A(5,1),B(5,3),C(﹣1,1),∴AB的中點坐標(biāo)為(5,2),則AB的垂直平分線方程為y=2;BC的中點坐標(biāo)為(2,2),,則BC的垂直平分線方程為y﹣2=﹣3(x﹣2),即3x+y﹣8=1.聯(lián)立,得.∴圓Ω的圓心為Ω(2,2),則圓Ω的圓心到直線l:x﹣2y+1=1的距離為d.故答案為:【點睛】本小題主要考查根據(jù)圓上點的坐標(biāo)求圓心坐標(biāo),考查點到直線的距離公式,屬于基礎(chǔ)題.13、【解析】

由三角形ABC的邊長為2不難求出三角形ABC的面積,又由扇形的半徑為,也可以求出扇形的面積,代入幾何概型的計算公式即可求出答案.【詳解】由題意知,在△ABC中,BC邊上的高AO正好為,∴圓與邊CB相切,如圖.S扇形=×××=,S△ABC=×2×2×=,∴P==.【點睛】本題考查面積型幾何概型概率的求法,屬基礎(chǔ)題.14、【解析】

由,得,可得出,再利用、、三點共線的向量結(jié)論得出,可解出實數(shù)的值.【詳解】由,得,可得出,由于、、三點共線,,解得,故答案為.【點睛】本題考查三點共線問題的處理,解題的關(guān)鍵就是利用三點共線的向量等價條件的應(yīng)用,考查運算求解的能力,屬于中等題.15、2【解析】

根據(jù)向量的數(shù)量積的運算公式,列出方程,即可求解.【詳解】由題意,向量,因為向量與垂直,所以,解得.故答案為:2.【點睛】本題主要考查了向量的坐標(biāo)運算,以及向量的垂直關(guān)系的應(yīng)用,著重考查了推理與運算能力,屬于基礎(chǔ)題.16、3【解析】

易知直線過定點,再結(jié)合圖形求解.【詳解】依題意得直線過定點,如圖:若兩直線將圓分成三個部分,則直線必須與圓相交于圖中陰影部分.又,所以的取值范圍是;當(dāng)直線位于時,劃分成的三個部分中有兩部分的面積相等.【點睛】本題考查直線和圓的位置關(guān)系的應(yīng)用,直線的斜率,結(jié)合圖形是此題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為,值域為;(2),或,【解析】

先用降冪公式,再用輔助角公式將化簡成的形式,再求最小正周期,值域與的解.【詳解】(1)故最小正周期為,又,故,所以值域為.故最小正周期為,值域為.(2)由(1),故得化簡得,所以或,.即,或,.故方程的解為:,或,【點睛】本題主要考查三角函數(shù)公式,一般方法是先將三角函數(shù)化簡為的形式,再根據(jù)題意求解相關(guān)內(nèi)容.18、(1)(2)【解析】分析:利用二倍角的正弦公式、二倍角的余弦公式以及兩角和與差的正弦公式將函數(shù)化為,(1)將代入,利用特殊角的三角函數(shù)可得的值;(2)利用正弦函數(shù)的單調(diào)性解不等式,可得到函數(shù)的遞增區(qū)間.詳解:(Ⅰ)===(Ⅱ)由題可得,函數(shù)的單調(diào)遞增區(qū)間是點睛:本題主要考查三角函數(shù)的單調(diào)性、三角函數(shù)的恒等變換,屬于中檔題.函數(shù)的單調(diào)區(qū)間的求法:(1)代換法:①若,把看作是一個整體,由求得函數(shù)的減區(qū)間,求得增區(qū)間;②若,則利用誘導(dǎo)公式先將的符號化為正,再利用①的方法,或根據(jù)復(fù)合函數(shù)的單調(diào)性規(guī)律進行求解;(2)圖象法:畫出三角函數(shù)圖象,利用圖象求函數(shù)的單調(diào)區(qū)間.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用等差數(shù)列的通項公式列出方程組,求出首項和公差,由此能求出的通項公式.

(Ⅱ)由,,能求出數(shù)列的前n項和.【詳解】(Ⅰ)設(shè)等差數(shù)列的公差為,則解得,∴.(Ⅱ).20、(1)證明見詳解;(2)證明見詳解【解析】

(1)取的中點,證出,再利用線面平行的判定定理即可證出.(2)利用線面垂直的判定定理可證出平面,再根據(jù)線面垂直的定義即可證出.【詳解】如圖,取的中點,連接,E為PB中點,,且,又,,,,為平行四邊形,即,又平面PCD,平面PCD,所以平面PCD.(2)由平面ABCD,所以,又因為,,所以,,平面,又平面,.【點睛】本題考查了線面平行的判定定理、線面垂直的判定定理,要證線面平行,需先證線線平行;要證異面直線垂直,可先證線面垂直,此題屬于基

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論