遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第1頁
遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第2頁
遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第3頁
遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第4頁
遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續(xù)免費閱讀

付費下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

遼寧省沈陽市第31中學2024年數(shù)學高一下期末統(tǒng)考模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,角所對的邊分別為.若,,,則等于()A. B. C. D.2.過點P(0,2)作直線x+my﹣4=0的垂線,垂足為Q,則Q到直線x+2y﹣14=0的距離最小值為()A.0 B.2 C. D.23.過點A(3,3)且垂直于直線的直線方程為A. B. C. D.4.已知底面邊長為1,側(cè)棱長為2的正四棱柱的各頂點均在同一個球面上,則該球的體積為()A. B. C. D.5.已知等差數(shù)列的前項和為,且,則滿足的正整數(shù)的最大值為()A.16 B.17 C.18 D.196.在下列區(qū)間中,函數(shù)的零點所在的區(qū)間為()A. B. C. D.7.經(jīng)統(tǒng)計某射擊運動員隨機命中的概率可視為,為估計該運動員射擊4次恰好命中3次的概率,現(xiàn)采用隨機模擬的方法,先由計算機產(chǎn)生0到9之間取整數(shù)的隨機數(shù),用0,1,2沒有擊中,用3,4,5,6,7,8,9表示擊中,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):7525,0293,7140,9857,0347,4373,8638,7815,1417,55500371,6233,2616,8045,6011,3661,9597,7424,7610,4281根據(jù)以上數(shù)據(jù),則可估計該運動員射擊4次恰好命中3次的概率為()A. B. C. D.8.函數(shù)的最小正周期為,則的圖象的一條對稱軸方程是()A. B. C. D.9.在等差數(shù)列中,若,且它的前項和有最大值,則使成立的正整數(shù)的最大值是()A.15 B.16 C.17 D.1410.如圖,在中,面,,是的中點,則圖中直角三角形的個數(shù)是()A.5 B.6 C.7 D.8二、填空題:本大題共6小題,每小題5分,共30分。11.關(guān)于函數(shù)f(x)=4sin(2x+)(x∈R),有下列命題:①y=f(x)的表達式可改寫為y=4cos(2x﹣);②y=f(x)是以2π為最小正周期的周期函數(shù);③y=f(x)的圖象關(guān)于點對稱;④y=f(x)的圖象關(guān)于直線x=﹣對稱.其中正確的命題的序號是.12.當,時,執(zhí)行完如圖所示的一段程序后,______.13.在等差數(shù)列中,已知,,則________.14.已知1,,,,4成等比數(shù)列,則______.15.已知直線平分圓的周長,則實數(shù)________.16.若,則的取值范圍是________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.在中,角的對邊分別為.若.(1)求;(2)求的面積的最大值.18.下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學、物理原始成績:用這44人的兩科成績制作如下散點圖:學號為22號的同學由于嚴重感冒導致物理考試發(fā)揮失常,學號為31號的同學因故未能參加物理學科的考試,為了使分析結(jié)果更客觀準確,老師將兩同學的成績(對應于圖中兩點)剔除后,用剩下的42個同學的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標:數(shù)學學科平均分為110.5,標準差為18.36,物理學科的平均分為74,標準差為11.18,數(shù)學成績與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.(1)若不剔除兩同學的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析與的大小關(guān)系,并在圖中畫出回歸直線的大致位置;(2)如果同學參加了這次物理考試,估計同學的物理分數(shù)(精確到個位);(3)就這次考試而言,學號為16號的同學數(shù)學與物理哪個學科成績要好一些?(通常為了比較某個學生不同學科的成績水平,可按公式統(tǒng)一化成標準分再進行比較,其中為學科原始分,為學科平均分,為學科標準差).19.已知函數(shù).(1)求函數(shù)的最小正周期;(2)將函數(shù)的圖象向右平移個單位得到函數(shù)的圖象,若,求的值域.20.已知向量.(1)求函數(shù)的解析式及在區(qū)間上的值域;(2)求滿足不等式的的集合.21.已知三棱柱中,三個側(cè)面均為矩形,底面為等腰直角三角形,,點為棱的中點,點在棱上運動.(1)求證;(2)當點運動到某一位置時,恰好使二面角的平面角的余弦值為,求點到平面的距離;(3)在(2)的條件下,試確定線段上是否存在一點,使得平面?若存在,確定其位置;若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

利用正弦定理可求.【詳解】由正弦定理得.故選B.【點睛】本題考查正弦定理的應用,屬于容易題.2、C【解析】

由直線過定點,得到的中點,由垂直直線,得到點在以點為圓心,以為半徑的圓,求得圓的方程,由此求出到直線的距離最小值,得到答案.【詳解】由題意,過點作直線的垂線,垂足為,直線過定點,由中點公式可得,的中點,由垂直直線,所以點點在以點為圓心,以為半徑的圓,其圓的方程為,則圓心到直線的距離為所以點到直線的距離最小值;,故選:C.【點睛】本題主要考查了圓的標準方程,直線與圓的位置關(guān)系的應用,同時涉及到點到直線的距離公式的應用,著重考查了推理與計算能力,以及分析問題和解答問題的能力,試題綜合性強,屬于中檔試題.3、D【解析】過點A(3,3)且垂直于直線的直線斜率為,代入過的點得到.故答案為D.4、C【解析】

根據(jù)題意可知所求的球為正四棱柱的外接球,根據(jù)正四棱柱的特點利用勾股定理可求得外接球半徑,代入球的體積公式求得結(jié)果.【詳解】由題意可知所求的球為正四棱柱的外接球底面正方形對角線長為:外接球半徑外接球體積本題正確選項:【點睛】本題考查正棱柱外接球體積的求解問題,關(guān)鍵是能夠根據(jù)正棱柱的特點確定球心位置,從而利用勾股定理求得外接球半徑.5、C【解析】

先由,得到,,,公差大于零,再由數(shù)列的求和公式,即可得出結(jié)果.【詳解】由得,,,,所以公差大于零.又,,,故選C.【點睛】本題主要考查等差數(shù)列的應用,熟記等差數(shù)列的性質(zhì)與求和公式即可,屬于??碱}型.6、B【解析】

由函數(shù)的解析式,再根據(jù)函數(shù)零點的存在定理可得函數(shù)的零點所在的區(qū)間.【詳解】函數(shù)的零點所在的區(qū)間即函數(shù)與的交點所在區(qū)間.由函數(shù)與在定義域上只有一個交點,如圖.函數(shù)在定義域上只有一個零點.又,所以.所以的零點在上故選:B【點睛】本題主要考查求函數(shù)的零點所在區(qū)間,函數(shù)零點的存在定理,屬于基礎(chǔ)題.7、A【解析】

根據(jù)20組隨機數(shù)可知該運動員射擊4次恰好命中3次的隨機數(shù)共8組,據(jù)此可求出對應的概率.【詳解】由題意,該運動員射擊4次恰好命中3次的隨機數(shù)為:7525,0347,7815,5550,6233,8045,3661,7424,共8組,則該運動員射擊4次恰好命中3次的概率為.故答案為A.【點睛】本題考查了利用隨機模擬數(shù)表法求概率,考查了學生對基礎(chǔ)知識的掌握.8、B【解析】

根據(jù)最小正周期為求解與解析式,再求解的對稱軸判斷即可.【詳解】因為最小正周期為,故.故,對稱軸方程為,解得.當時,.故選:B【點睛】本題主要考查了三角函數(shù)最小正周期的應用以及對稱軸的計算.屬于基礎(chǔ)題.9、C【解析】

由題意可得,,且,由等差數(shù)列的性質(zhì)和求和公式可得結(jié)論.【詳解】∵等差數(shù)列的前項和有最大值,∴等差數(shù)列為遞減數(shù)列,又,∴,,∴,又,,∴成立的正整數(shù)的最大值是17,故選C.【點睛】本題考查等差數(shù)列的性質(zhì),涉及等差數(shù)列的求和公式,屬中檔題.10、C【解析】試題分析:因為面,所以,則三角形為直角三角形,因為,所以,所以三角形是直角三角形,易證,所以面,即,則三角形為直角三角形,即共有7個直角三角形;故選C.考點:空間中垂直關(guān)系的轉(zhuǎn)化.二、填空題:本大題共6小題,每小題5分,共30分。11、①③【解析】

∵f(x)=4sin(2x+)=4cos()=4cos(﹣2x+)=4cos(2x﹣),故①正確;∵T=,故②不正確;令x=﹣代入f(x)=4sin(2x+)得到f(﹣)=4sin(+)=0,故y=f(x)的圖象關(guān)于點對稱,③正確④不正確;故答案為①③.12、1【解析】

模擬程序運行,可得出結(jié)論.【詳解】時,滿足,所以.故答案為:1.【點睛】本題考查程序框圖,考查條件結(jié)構(gòu),解題時模擬程序運行即可.13、-16【解析】

設(shè)等差數(shù)列的公差為,利用通項公式求出即可.【詳解】設(shè)等差數(shù)列的公差為,得,則.故答案為【點睛】本題考查了等差數(shù)列通項公式的應用,屬于基礎(chǔ)題.14、2【解析】

因為1,,,,4成等比數(shù)列,根據(jù)等比數(shù)列的性質(zhì),可得,再利用,確定取值.【詳解】因為1,,,,4成等比數(shù)列,所以,所以或,又因為,所以.故答案為:2【點睛】本題主要考查等比數(shù)列的性質(zhì),還考查運算求解的能力,屬于基礎(chǔ)題.15、1【解析】

由題得圓心在直線上,解方程即得解.【詳解】由題得圓心(1,a)在直線上,所以.故答案為1【點睛】本題主要考查直線和圓的位置關(guān)系,意在考查學生對該知識的理解掌握水平,屬于基礎(chǔ)題.16、【解析】

利用反函數(shù)的運算法則,定義及其性質(zhì),求解即可.【詳解】由,得所以,又因為,所以.故答案為:【點睛】本題考查反余弦函數(shù)的運算法則,反函數(shù)的定義域,考查學生計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)用正弦定理將式子化為,進行整理化簡可得的值,即得角B;(2)由余弦定理可得關(guān)于的等式,再利用基本不等式和三角形面積公式可得面積最大值?!驹斀狻浚?)由題得,,,,解得,,.(2),由余弦定理得,,整理得,又,即,則的面積的最大值為.【點睛】本題考查用正弦定理求三角形內(nèi)角,由余弦定理和基本不等式求三角形面積最大值,是基礎(chǔ)題型。18、(1),理由見解析(2)81(3)【解析】

(1)不剔除兩同學的數(shù)據(jù),44個數(shù)據(jù)會使回歸效果變差,從而得到,描出回歸直線即可;(2)將x=125代入回歸直線方程,即可得到答案;(3)利用題目給出的標準分計算公式進行計算即可得到結(jié)論.【詳解】(1),說明理由可以是:①離群點A,B會降低變量間的線性關(guān)聯(lián)程度;②44個數(shù)據(jù)點與回歸直線的總偏差更大,回歸效果更差,所以相關(guān)系數(shù)更小;③42個數(shù)據(jù)點與回歸直線的總偏差更小,回歸效果更好,所以相關(guān)系數(shù)更大;④42個數(shù)據(jù)點更加貼近回歸直線;⑤44個數(shù)據(jù)點與回歸直線更離散,或其他言之有理的理由均可.要點:直線斜率須大于0且小于的斜率,具體為止稍有出入沒關(guān)系,無需說明理由.(2)令,代入得所以,估計同學的物理分數(shù)大約為分.(3)由表中知同學的數(shù)學原始分為122,物理原始分為82,數(shù)學標準分為物理標準分為,故同學物理成績比數(shù)學成績要好一些.【點睛】本題考查散點圖和線性回歸方程的簡單應用,考查數(shù)據(jù)處理與數(shù)學應用能力.19、(1);(2).【解析】

(1)將已知函數(shù)轉(zhuǎn)化為,結(jié)合周期的公式,即可求解;(2)利用三角函數(shù)的圖象變換,求得,再結(jié)合三角函數(shù)的性質(zhì),即求解.【詳解】(1)因為,所以的最小正周期;(2)若將函數(shù)的圖象向右平移個單位,得到函數(shù)的圖象對應的解析式為,由知,,所以當即時,取得最小值;當即時,取得最大值1,因此的值域為.【點睛】本題主要考查了三角函數(shù)的恒等變換,以及正項型函數(shù)的圖象與性質(zhì)的應用,其中解答中熟記三角函數(shù)的圖象與性質(zhì)是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.20、(1),值域為(2)【解析】

(1)根據(jù)向量的數(shù)量積,得到函數(shù)解析式,再根據(jù)正弦函數(shù)的性質(zhì),即可得出結(jié)果;(2)先由題意,將不等式化為,結(jié)合正弦函數(shù)的性質(zhì),即可得出結(jié)果.【詳解】解:(1),由,得,,,在區(qū)間上的值域為(2)由,得,即所以解得,的解集為【點睛】本題主要考查正弦型函數(shù)的值域,以及三角不等式,熟記正弦函數(shù)的性質(zhì)即可,屬于??碱}型.21、(1)見解析;(2);(3)存在,為中點.【解析】

(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設(shè)E(m,0,2),要證A1C⊥AE,可證,只需證明,利用向量的數(shù)量積運算即可證明;(2)分別求出平面EA1D、平面A1DB的一個法向量,由兩法向量夾角余弦值的絕對值等于,解得m值,由此可得答案;(3)在(2)的條件下,設(shè)F(x,y,0),可知與平面A1DB的一個法向量平行,由此可求出點F坐標,進而求出||,即得答案.【詳解】(1)以CB為x軸,CA為y軸,CC1為z軸,C為原點建立坐標系,設(shè)E(m,0,2),C(0,0,0),A(0,2,0),A1(0,2,2),D(0,0,1),B(2,0,0),=(0,﹣2,﹣2),=(m,﹣2,2),因為=0+(﹣2)×(﹣2)﹣2×2=0,所以⊥,即A1C⊥AE;(2)=(m,0,1),=(0,2,1),設(shè)=(x,y,z)為平面EA1D的一個法向量,則即,?。剑?,m,﹣2m),=(2,0,﹣1),設(shè)=(x,y,z)為平面A1DB的一個法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論