版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年新疆吐魯番市高昌區(qū)第二中學(xué)高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知為銳角,,則()A. B. C. D.2.在中,角,,的對邊分別為,,,且.則()A. B.或 C. D.3.已知,則,,的大小順序?yàn)椋ǎ〢. B. C. D.4.已知m、n、a、b為空間四條不同直線,α、β、為不同的平面,則下列命題正確的是().A.若,,則B.若,,則C.若,,,則D.若,,,則5.已知各項(xiàng)為正數(shù)的等比數(shù)列中,,,則公比q=A.4 B.3 C.2 D.6.若,,則()A. B. C. D.7.有窮數(shù)列中的每一項(xiàng)都是-1,0,1這三個(gè)數(shù)中的某一個(gè)數(shù),,且,則有窮數(shù)列中值為0的項(xiàng)數(shù)是()A.1000 B.1010 C.1015 D.10308.在中,,,成等差數(shù)列,,則的形狀為()A.直角三角形 B.等腰直角三角形C.等腰三角形 D.等邊三角形9.從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng),則甲被選中的概率為()A. B. C. D.10.已知等差數(shù)列的前項(xiàng)和,若,則()A.25 B.39 C.45 D.54二、填空題:本大題共6小題,每小題5分,共30分。11.已知棱長都相等正四棱錐的側(cè)面積為,則該正四棱錐內(nèi)切球的表面積為________.12.若點(diǎn)為圓的弦的中點(diǎn),則弦所在的直線的方程為___________.13.若不等式對于任意都成立,則實(shí)數(shù)的取值范圍是____________.14.已知數(shù)列的前項(xiàng)和為,則其通項(xiàng)公式__________.15.在中,角的對邊分別為,且面積為,則面積的最大值為_____.16.?dāng)?shù)列的前項(xiàng)和為,,且(),記,則的值是________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.在中,已知角的對邊分別為,且.(1)求角的大??;(2)若,,求的面積.18.如圖,在四棱錐中,,且,,,點(diǎn)在上,且.(1)求證:平面⊥平面;(2)求證:直線∥平面.19.如圖,四棱錐中,,平面平面,,為的中點(diǎn).(1)求證://平面;(2)求點(diǎn)到面的距離(3)求二面角平面角的正弦值20.在中,角A,B,C所對的邊分別為a,b,c.已知,,.(1)求:(2)求的面積.21.如圖,在中,,點(diǎn)在邊上,(1)求的度數(shù);(2)求的長度.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】
先將展開并化簡,再根據(jù)二倍角公式,計(jì)算可得。【詳解】由題得,,整理得,又為銳角,則,,解得.故選:A【點(diǎn)睛】本題考查兩角和差公式以及二倍角公式,是基礎(chǔ)題。2、A【解析】
利用余弦定理和正弦定理化簡已知條件,求得的值,即而求得的大小.【詳解】由于,所以,由余弦定理和正弦定理得,即,由于是三角形的內(nèi)角,所以為正數(shù),所以,為三角形的內(nèi)角,所以.故選:A【點(diǎn)睛】本小題主要考查正弦定理和余弦定理邊角互化,考查三角形的內(nèi)角和定理,考查兩角和的正弦公式,屬于基礎(chǔ)題.3、B【解析】
由三角函數(shù)的輔助角公式、余弦函數(shù)的二倍角公式,正切函數(shù)的和角公式求得.【詳解】故選B.【點(diǎn)睛】本題考查三角函數(shù)的輔助角公式、余弦函數(shù)的二倍角公式,正切函數(shù)的和角公式的三角恒等變換,屬于基礎(chǔ)題.4、D【解析】
根據(jù)空間中直線與平面、平面與平面位置關(guān)系及其性質(zhì),即可判斷各選項(xiàng).【詳解】對于A,,,只有當(dāng)與平面α、β的交線垂直時(shí),成立,當(dāng)與平面α、β的交線不垂直時(shí),不成立,所以A錯(cuò)誤;對于B,,,則或,所以B錯(cuò)誤;對于C,,,,由面面平行性質(zhì)可知,或a、b為異面直線,所以C錯(cuò)誤;對于D,若,,,由線面垂直與線面平行性質(zhì)可知,成立,所以D正確.故選:D.【點(diǎn)睛】本題考查了空間中直線與平面、平面與平面位置關(guān)系的性質(zhì)與判定,對空間想象能力要求較高,屬于基礎(chǔ)題.5、C【解析】
由,利用等比數(shù)列的性質(zhì),結(jié)合各項(xiàng)為正數(shù)求出,從而可得結(jié)果.【詳解】,,,,故選C.【點(diǎn)睛】本題主要考查等比數(shù)列的性質(zhì),以及等比數(shù)列基本量運(yùn)算,意在考查靈活運(yùn)用所學(xué)知識解決問題的能力,屬于簡單題.6、D【解析】
由于,,,,利用“平方關(guān)系”可得,,變形即可得出.【詳解】∵,,∴,∴.∵,∴,∵,∴.∴.故選D.【點(diǎn)睛】本題考查了兩角和的余弦公式、三角函數(shù)同角基本關(guān)系式、拆分角等基礎(chǔ)知識與基本技能方法,屬于中檔題.7、B【解析】
把(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870展開,將a1+a2+a3+…+a2015=425,代入化簡得:=1005,由于數(shù)列a1,a2,a3,…,a2015中的每一項(xiàng)都是﹣1,0,1這三個(gè)數(shù)中的某一個(gè)數(shù),即可得出.【詳解】(a1+1)2+(a2+1)2+(a3+1)2+…+(a2015+1)2=3870,展開可得:+2(a1+a2+…+a2015)+2015=3870,把a(bǔ)1+a2+a3+…+a2015=425,代入化簡可得:=1005,∵數(shù)列a1,a2,a3,…,a2015中的每一項(xiàng)都是﹣1,0,1這三個(gè)數(shù)中的某一個(gè)數(shù),∴有窮數(shù)列a1,a2,a3,…,a2015中值為0的項(xiàng)數(shù)等于2015﹣1005=1.故選B.【點(diǎn)睛】本題考查了乘法公式化簡求值、數(shù)列求和,考查了推理能力與計(jì)算能力,屬于中檔題.8、B【解析】
根據(jù)等差中項(xiàng)以及余弦定理即可.【詳解】因?yàn)?,,成等差?shù)列,得為直角三角形為等腰直角三角形,所以選擇B【點(diǎn)睛】本題主要考查了等差中項(xiàng)和余弦定理,若為等差數(shù)列,則,屬于基礎(chǔ)題.9、C【解析】分析:用列舉法得出甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng)的事件數(shù),從而可求甲被選中的概率.詳解:從甲、乙、丙、丁四人中隨機(jī)選出人參加志愿活動(dòng),包括:甲乙;甲丙;甲??;乙丙;乙??;丙丁6種情況,甲被選中的概率為.故選C.點(diǎn)睛:本題考查用列舉法求基本事件的概率,解題的關(guān)鍵是確定基本事件,屬于基礎(chǔ)題.10、A【解析】
設(shè)等差數(shù)列的公差為,從而根據(jù),即可求出,這樣根據(jù)等差數(shù)列的前項(xiàng)和公式即可求出.【詳解】解:設(shè)等差數(shù)列的公差為,則由,得:,,,故選:A.【點(diǎn)睛】本題主要考查等差數(shù)列的通項(xiàng)公式和等差數(shù)列的前項(xiàng)和公式,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
根據(jù)側(cè)面積求出正四棱錐的棱長,畫出組合體的截面圖,根據(jù)三角形的相似求得四棱錐內(nèi)切球的半徑,于是可得內(nèi)切球的表面積.【詳解】設(shè)正四棱錐的棱長為,則,解得.于是該正四棱錐內(nèi)切球的大圓是如圖△PMN的內(nèi)切圓,其中,.∴.設(shè)內(nèi)切圓的半徑為,由∽,得,即,解得,∴內(nèi)切球的表面積為.【點(diǎn)睛】與球有關(guān)的組合體問題,一種是內(nèi)切,一種是外接.解題時(shí)要認(rèn)真分析圖形,明確切點(diǎn)和接點(diǎn)的位置,確定有關(guān)元素間的數(shù)量關(guān)系,并作出合適的截面圖,如球內(nèi)切于正方體,切點(diǎn)為正方體各個(gè)面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點(diǎn)均在球面上,正方體的體對角線長等于球的直徑.12、;【解析】
利用垂徑定理,即圓心與弦中點(diǎn)連線垂直于弦.【詳解】圓標(biāo)準(zhǔn)方程為,圓心為,,∵是中點(diǎn),∴,即,∴的方程為,即.故答案為.【點(diǎn)睛】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).13、【解析】
利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.14、【解析】分析:先根據(jù)和項(xiàng)與通項(xiàng)關(guān)系得當(dāng)時(shí),,再檢驗(yàn),時(shí),不滿足上述式子,所以結(jié)果用分段函數(shù)表示.詳解:∵已知數(shù)列的前項(xiàng)和,∴當(dāng)時(shí),,當(dāng)時(shí),,經(jīng)檢驗(yàn),時(shí),不滿足上述式子,故數(shù)列的通項(xiàng)公式.點(diǎn)睛:給出與的遞推關(guān)系求,常用思路是:一是利用轉(zhuǎn)化為的遞推關(guān)系,再求其通項(xiàng)公式;二是轉(zhuǎn)化為的遞推關(guān)系,先求出與之間的關(guān)系,再求.應(yīng)用關(guān)系式時(shí),一定要注意分兩種情況,在求出結(jié)果后,看看這兩種情況能否整合在一起.15、【解析】
利用三角形面積構(gòu)造方程可求得,可知,從而得到;根據(jù)余弦定理,結(jié)合基本不等式可求得,代入三角形面積公式可求得最大值.【詳解】,由余弦定理得:(當(dāng)且僅當(dāng)時(shí)取等號)本題正確結(jié)果:【點(diǎn)睛】本題考查解三角形問題中的三角形面積的最值問題的求解;求解最值問題的關(guān)鍵是能夠通過余弦定理構(gòu)造等量關(guān)系,進(jìn)而利用基本不等式求得邊長之積的最值,屬于??碱}型.16、3【解析】
由已知條件推導(dǎo)出是首項(xiàng)為,公比為的等比數(shù)列,由此能求出的值.【詳解】解:因?yàn)閿?shù)列的前項(xiàng)和為,,且(),,.即,.是首項(xiàng)為,公比為的等比數(shù)列,故答案為:【點(diǎn)睛】本題考查數(shù)列的前項(xiàng)和的求法,解題時(shí)要注意等比數(shù)列的性質(zhì)的合理應(yīng)用,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】
(1)利用邊角互化思想得,由結(jié)合兩角和的正弦公式可求出的值,于此得出角的大?。唬?)由余弦定理可計(jì)算出,再利用三角形的面積公式可得出的面積.【詳解】(1)∵是的內(nèi)角,∴且,又由正弦定理:得:,化簡得:,又∵,∴;(2)∵,,∴由余弦定理和(1)得,即,可得:,又∵,故所求的面積為.【點(diǎn)睛】本題考查正弦定理邊角互化的思想,考查余弦定理以及三角形的面積公式,本題巧妙的地方在于將配湊為,避免利用方程思想求出邊的值,考查計(jì)算能力,屬于中等題.18、(1)見解析;(2)見解析【解析】
(1)通過邊長關(guān)系可知,所以,又,所以平面,所以平面平面.(2)連接交與點(diǎn),連接,易得∽,所以,所以直線平面.,【詳解】(1)因?yàn)椋?,所以,所以又,且,平面,平面所以平面又平面所以平面平面?)連接交與點(diǎn),連接在四邊形中,,∽,所以又,即所以又直線平面,直線平面所以直線平面【點(diǎn)睛】(1)證明面面垂直:先正線面垂直,線又屬于另一個(gè)面,即可證明面面垂直.(2)證明線面平行,在面內(nèi)找一個(gè)線與已知直線平行即可.19、(1)見詳解;(2);(3)【解析】
(1)通過取中點(diǎn),利用中位線定理可得四變形為平行四邊形,然后利用線面平行的判定定理,可得結(jié)果.(2)根據(jù),可得平面,可得結(jié)果.(3)作,作,可得二面角平面角為,然后計(jì)算,可得結(jié)果.【詳解】(1)取中點(diǎn),連接,如圖由為的中點(diǎn),所以//且又,且,所以//且,故//且,所以四變形為平行四邊形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以為正三角形,所以則平面所以平面,且所以點(diǎn)到面的距離即(3)作交于點(diǎn),作交于點(diǎn),連接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角為,又為等腰直角三角形所以,所以所以又二面角平面角為故所以二面角平面角的正弦值為【點(diǎn)睛】本題考查了線面平行的判定定理,還考查了點(diǎn)面距和面面角的求法,第(3)中難點(diǎn)在于找到二面角的平面角,掌握定義以及綜合線面,面面的位置關(guān)系,細(xì)心計(jì)算,屬中檔題.20、(1);(2)【解析】
(1)由已知可先求,然后結(jié)合正弦定理可求的值;(2)利用兩
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲亢的飲食治療方法
- 2025年非金屬相關(guān)成型、加工機(jī)械項(xiàng)目合作計(jì)劃書
- 手外傷患者的營養(yǎng)支持
- 外科管道護(hù)理質(zhì)量控制與持續(xù)改進(jìn)
- 個(gè)案護(hù)理經(jīng)驗(yàn)分享
- 休克早期識別與干預(yù)
- 環(huán)境安全:醫(yī)院感染控制基礎(chǔ)
- 吸痰機(jī)使用課件
- 消防安全知識二十條
- 大腦中動(dòng)脈閉塞的護(hù)理
- DB11T 2491-2025 文物保護(hù)工程勘察規(guī)范 長城
- 急性心肌梗死治療課件
- 樹木砍伐安全培訓(xùn)課件
- 風(fēng)電場冬季防火知識培訓(xùn)課件
- 中國郵政2025南通市秋招綜合管理職能類崗位面試模擬題及答案
- 源網(wǎng)荷儲一體化項(xiàng)目并網(wǎng)調(diào)試實(shí)施方案
- 2025-2030奶山羊養(yǎng)殖效益分析及乳制品深加工與產(chǎn)業(yè)投資機(jī)會報(bào)告
- 《〈京津冀建設(shè)工程計(jì)價(jià)依據(jù)-預(yù)算消耗量定額〉城市地下綜合管廊工程》第一冊土建工程
- 兒科護(hù)理課件模板
- UPS不間斷電源課件教學(xué)
- 2024年江蘇省鹽城市護(hù)理三基業(yè)務(wù)知識考試復(fù)習(xí)試卷及答案
評論
0/150
提交評論