2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江西省宜春市靖安中學(xué)高一下數(shù)學(xué)期末學(xué)業(yè)水平測試模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,為正三角形,,,則多面體的正視圖(也稱主視圖)是A. B. C. D.2.設(shè)等差數(shù)列的前項(xiàng)的和為,若,,且,則()A. B. C. D.3.半圓的直徑,為圓心,是半圓上不同于的任意一點(diǎn),若為半徑上的動點(diǎn),則的最小值是()A.2 B.0 C.-2 D.44.已知點(diǎn),點(diǎn)是圓上任意一點(diǎn),則面積的最大值是()A. B. C. D.5.在等比數(shù)列中,,,則數(shù)列的前六項(xiàng)和為()A.63 B.-63 C.-31 D.316.邊長為的正方形中,點(diǎn)是的中點(diǎn),點(diǎn)是的中點(diǎn),將分別沿折起,使兩點(diǎn)重合于,則直線與平面所成角的正弦值為()A. B. C. D.7.在中,,,其面積為,則等于()A. B. C. D.8.已知兩個(gè)正數(shù)a,b滿足,則的最小值是(

)A.2 B.3 C.4 D.59.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.10.已知,則()A.-3 B. C. D.3二、填空題:本大題共6小題,每小題5分,共30分。11.在中,角的對邊分別為,若,則_______.(僅用邊表示)12.已知{}是等差數(shù)列,是它的前項(xiàng)和,且,則____.13.若不等式對于任意都成立,則實(shí)數(shù)的取值范圍是____________.14.已知數(shù)列滿足:(),設(shè)的前項(xiàng)和為,則______;15.已知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,若數(shù)列是等比數(shù)列,則___________.16.無限循環(huán)小數(shù)化成最簡分?jǐn)?shù)為________三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.某學(xué)校高一、高二、高三的三個(gè)年級學(xué)生人數(shù)如下表

高三

高二

高一

女生

133

153

z

男生

333

453

633

按年級分層抽樣的方法評選優(yōu)秀學(xué)生53人,其中高三有13人.(1)求z的值;(2)用分層抽樣的方法在高一中抽取一個(gè)容量為5的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至少有1名女生的概率;(3)用隨機(jī)抽樣的方法從高二女生中抽取2人,經(jīng)檢測她們的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把這2人的得分看作一個(gè)總體,從中任取一個(gè)數(shù),求該數(shù)與樣本平均數(shù)之差的絕對值不超過3.5的概率.18.某校全體教師年齡的頻率分布表如表1所示,其中男教師年齡的頻率分布直方圖如圖2所示.已知該校年齡在歲以下的教師中,男女教師的人數(shù)相等.表1:(1)求圖2中的值;(2)若按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動,求男女教師抽取的人數(shù);(3)若從年齡在的教師中隨機(jī)抽取2人,參加重陽節(jié)活動,求至少有1名女教師的概率.19.如圖1,已知菱形的對角線交于點(diǎn),點(diǎn)為線段的中點(diǎn),,,將三角形沿線段折起到的位置,,如圖2所示.(Ⅰ)證明:平面平面;(Ⅱ)求三棱錐的體積.20.如圖,在中,角,,的對邊分別為,,,且.(1)求的大??;(2)若,為外一點(diǎn),,,求四邊形面積的最大值.21.已知余切函數(shù).(1)請寫出余切函數(shù)的奇偶性,最小正周期,單調(diào)區(qū)間;(不必證明)(2)求證:余切函數(shù)在區(qū)間上單調(diào)遞減.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

為三角形,,平面,

且,則多面體的正視圖中,

必為虛線,排除B,C,

說明右側(cè)高于左側(cè),排除A.,故選D.2、C【解析】,,,,,,故選C.3、C【解析】

將轉(zhuǎn)化為,利用向量數(shù)量積運(yùn)算化簡,然后利用基本不等式求得表達(dá)式的最小值.【詳解】畫出圖像如下圖所示,,等號在,即為的中點(diǎn)時(shí)成立.故選C.【點(diǎn)睛】本小題主要考查平面向量加法運(yùn)算,考查平面向量的數(shù)量積運(yùn)算,考查利用基本不等式求最值,屬于中檔題.4、B【解析】

求出直線的方程,計(jì)算出圓心到直線的距離,可知的最大高度為,并計(jì)算出,最后利用三角形的面積公式可得出結(jié)果.【詳解】直線的方程,且,圓的圓心坐標(biāo)為,半徑長為,圓心到直線的距離為,所以,點(diǎn)到直線的距離的最大值為,因此,面積的最大值為,故選B.【點(diǎn)睛】本題考查三角形面積的最值問題,考查圓的幾何性質(zhì),當(dāng)直線與圓相離時(shí),若圓的半徑為,圓心到直線的距離為,則圓上一點(diǎn)到直線距離的最大值為,距離的最小值為,要熟悉相關(guān)結(jié)論的應(yīng)用.5、B【解析】

利用等比數(shù)列通項(xiàng)公式求出公式,由此能求出數(shù)列的前六項(xiàng)和.【詳解】在等比數(shù)列中,,,解得數(shù)列的前六項(xiàng)和為:.故選:【點(diǎn)睛】本題考查等比數(shù)列通項(xiàng)公式求解基本量,屬于基礎(chǔ)題.6、D【解析】

在正方形中連接,交于點(diǎn),根據(jù)正方形的性質(zhì),在折疊圖中平面,得到,從而平面,面平面,則是在平面上的射影,找到直線與平面所所成的角.然后在直角三角中求解.【詳解】如圖所示:在正方形中連接,交于點(diǎn),在折疊圖,連接,因?yàn)?,所以平面,所以,又因?yàn)?,所以平面,又因?yàn)槠矫?,所以平面,則是在平面上的射影,所以即為所求.因?yàn)楣蔬x:D【點(diǎn)睛】本題主要考查了折疊圖問題,還考查了推理論證和空間想象的能力,屬于中檔題.7、A【解析】

先由三角形面積公式求出,再由余弦定理得到,再由正弦定理,即可得出結(jié)果.【詳解】因?yàn)樵谥校?,,其面積為,所以,因此,所以,所以,由正弦定理可得:,所以.故選A【點(diǎn)睛】本題主要考查解三角形,熟記正弦定理和余弦定理即可,屬于基礎(chǔ)題型.8、D【解析】

根據(jù)題意,分析可得,對其變形可得,由基本不等式分析可得答案.【詳解】解:根據(jù)題意,正數(shù),滿足,則;即的最小值是;故選:.【點(diǎn)睛】本題考查基本不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是掌握基本不等式應(yīng)用的條件.9、A【解析】

根據(jù)圖象求出即可得到函數(shù)解析式.【詳解】顯然,因?yàn)椋?,所以,由得,所以,即,,因?yàn)?,所以,所?故選:A【點(diǎn)睛】本題考查了根據(jù)圖象求函數(shù)解析式,利用周期求,代入最高點(diǎn)的坐標(biāo)求是解題關(guān)鍵,屬于基礎(chǔ)題.10、C【解析】

由同角三角函數(shù)關(guān)系得到余弦、正切,再由兩角差的正切公式得到結(jié)果.【詳解】已知,則,,則故答案為C.【點(diǎn)睛】這個(gè)題目考查了三角函數(shù)的化簡求值,1.利用sin2α+cos2α=1可以實(shí)現(xiàn)角α的正弦、余弦的互化,利用=tanα可以實(shí)現(xiàn)角α的弦切互化;2.注意公式逆用及變形應(yīng)用:1=sin2α+cos2α,sin2α=1-cos2α,cos2α=1-sin2α.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用正弦定理和三角函數(shù)關(guān)系式的變換的應(yīng)用求出結(jié)果.【詳解】由正弦定理,結(jié)合可得,即,即,從而.【點(diǎn)睛】本題考查的知識要點(diǎn):三角函數(shù)關(guān)系式的恒等變換,正弦定理余弦定理和三角形面積的應(yīng)用,主要考察學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.12、【解析】

根據(jù)等差數(shù)列的性質(zhì)得,由此得解.【詳解】解:由題意可知,;同理。故.故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.13、【解析】

利用換元法令(),將不等式左邊構(gòu)造成一次函數(shù),根據(jù)一次函數(shù)的性質(zhì)列不等式組,解不等式組求得的取值范圍.【詳解】令,,則.由已知得,不等式對于任意都成立.又令,則,即,解得.所以所求實(shí)數(shù)的取值范圍是.故答案為:【點(diǎn)睛】本小題主要考查不等式恒成立問題的求解策略,考查三角函數(shù)的取值范圍,考查一次函數(shù)的性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.14、130【解析】

先利用遞推公式計(jì)算出的通項(xiàng)公式,然后利用錯(cuò)位相減法可求得的表達(dá)式,即可完成的求解.【詳解】因?yàn)?,所以,所以,所以,又因?yàn)椋环蠒r(shí)的通項(xiàng)公式,所以,當(dāng)時(shí),,所以,所以,所以,所以.故答案為:.【點(diǎn)睛】本題考查根據(jù)數(shù)列的遞推公式求通項(xiàng)公式以及錯(cuò)位相減法的使用,難度一般.利用遞推公式求解數(shù)列的通項(xiàng)公式時(shí),若出現(xiàn)了的形式,一定要注意標(biāo)注,同時(shí)要驗(yàn)證是否滿足的情況,這決定了通項(xiàng)公式是否需要分段去寫.15、或【解析】

由等比數(shù)列的定義得出,可得出,利用兩角和與差的余弦公式化簡可求得的值.【詳解】由于數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,則,,又?jǐn)?shù)列是等比數(shù)列,則,即,即,即,整理得,即,可得,,因此,或.故答案為:或.【點(diǎn)睛】本題考查利用等差數(shù)列和等比數(shù)列的定義求參數(shù),同時(shí)也涉及了兩角和與差的余弦公式的化簡計(jì)算,考查計(jì)算能力,屬于中等題.16、【解析】

利用無窮等比數(shù)列求和的方法即可.【詳解】.故答案為:【點(diǎn)睛】本題主要考查了無窮等比數(shù)列的求和問題,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)433(2)(3)【解析】

(1)設(shè)該???cè)藬?shù)為n人,由題意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)設(shè)所抽樣本中有m個(gè)女生,因?yàn)橛梅謱映闃拥姆椒ㄔ诟咭慌谐槿∫粋€(gè)容量為5的樣本,所以,解得m=2也就是抽取了2名女生,3名男生,分別記作S1,S2;B1,B2,B3,則從中任取2人的所有基本事件為(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13個(gè),其中至少有1名女生的基本事件有7個(gè):(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以從中任取2人,至少有1名女生的概率為.(3)樣本的平均數(shù)為,那么與樣本平均數(shù)之差的絕對值不超過3.5的數(shù)為1.4,2.6,1.2,2.7,1.3,1.3這6個(gè)數(shù),總的個(gè)數(shù)為2,所以該數(shù)與樣本平均數(shù)之差的絕對值不超過3.5的概率為.18、(1);(2)見解析;(3)【解析】

由男教師年齡的頻率分布直方圖總面積為1求得答案;由男教師年齡在的頻率可計(jì)算出男教師人數(shù),從而女教師人數(shù)也可求得,于是通過分層抽樣的比例關(guān)系即可得到答案;年齡在的教師中,男教師為(人),則女教師為1人,從而可計(jì)算出基本事件的概率.【詳解】(1)由男教師年齡的頻率分布直方圖得解得(2)該校年齡在歲以下的男女教師人數(shù)相等,且共14人,年齡在歲以下的男教師共7人由(1)知,男教師年齡在的頻率為男教師共有(人),女教師共有(人)按性別分層抽樣,隨機(jī)抽取16人參加技能比賽活動,則男教師抽取的人數(shù)為(人),女教師抽取的人數(shù)為人(3)年齡在的教師中,男教師為(人),則女教師為1人從年齡在的教師中隨機(jī)抽取2人,共有10種可能情形其中至少有1名女教師的有4種情形故所求概率為【點(diǎn)睛】本題主要考查頻率分布直方圖,分層抽樣,古典概率的計(jì)算,意在考查學(xué)生的計(jì)算能力和分析能力,難度不大.19、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)折疊前,AC⊥DE;,從而折疊后,DE⊥PF,DE⊥CF,由此能證明DE⊥平面PCF.再由DC∥AE,DC=AE能得到DC∥EB,DC=EB.說明四邊形DEBC為平行四邊形.可得CB∥DE.由此能證明平面PBC⊥平面PCF.(Ⅱ)由題意根據(jù)勾股定理運(yùn)算得到,又由(Ⅰ)的結(jié)論得到,可得平面,再利用等體積轉(zhuǎn)化有,計(jì)算結(jié)果.【詳解】(Ⅰ)折疊前,因?yàn)樗倪呅螢榱庑危?;所以折疊后,,,又,平面,所以平面因?yàn)樗倪呅螢榱庑?,所以.又點(diǎn)為線段的中點(diǎn),所以.所以四邊形為平行四邊形.所以.又平面,所以平面.因?yàn)槠矫?,所以平面平面.(Ⅱ)圖1中,由已知得,,所以圖2中,,又所以,所以又平面,所以又,平面,所以平面,所以.所以三棱錐的體積為.【點(diǎn)睛】本題考查線面垂直、面面垂直的證明,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查了三棱錐體積的求法,運(yùn)用了轉(zhuǎn)化思想,是中檔題.20、(1)(2)【解析】

(1)由余弦定理和誘導(dǎo)公式整理,得到,求出;(2)在中,用余弦定理表示出,判斷是等腰直角三角形,再利用三角形面積公式表示出,再利用輔助角公式化簡,求出四邊形面積的最大值.【詳解】(1)在中,由,所以∵,∴,∴,又∵,∴.又∵,∴,即為.(2)在中,,,由余弦定理可得,又∵,∴為等腰直角三角形,∴,∴當(dāng)時(shí),四邊形面積有最大值,最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論