2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第1頁
2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第2頁
2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第3頁
2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第4頁
2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆北京市昌平區(qū)臨川育人學(xué)校數(shù)學(xué)高一下期末考試試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在△ABC中,A=60°,AB=2,且△ABC的面積為,則BC的長為().A. B.2 C. D.2.已知圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,直線與圓相交于,兩點(diǎn),且,則圓的半徑長為()A. B. C.3 D.3.如圖為A、B兩名運(yùn)動(dòng)員五次比賽成績(jī)的莖葉圖,則他們的平均成績(jī)和方差的關(guān)系是()A., B.,C., D.,4.已知點(diǎn),,則直線的斜率是()A. B. C.5 D.15.若實(shí)數(shù),滿足約束條件,則的取值范圍是()A. B. C. D.6.已知直三棱柱的所有頂點(diǎn)都在球0的表面上,,,則=()A.1 B.2 C. D.47.已知在中,為線段上一點(diǎn),且,若,則()A. B. C. D.8.各項(xiàng)均為實(shí)數(shù)的等比數(shù)列{an}前n項(xiàng)之和記為,若,,則等于A.150 B.-200 C.150或-200 D.-50或4009.在四邊形中,,且·=0,則四邊形是()A.菱形 B.矩形 C.直角梯形 D.等腰梯形10.若直線平分圓的周長,則的值為()A.-1 B.1 C.3 D.5二、填空題:本大題共6小題,每小題5分,共30分。11.在棱長均為2的三棱錐中,分別為上的中點(diǎn),為棱上的動(dòng)點(diǎn),則周長的最小值為________.12.如圖,兩個(gè)正方形,邊長為2,.將繞旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,與平面的距離最大值為______.13.已知數(shù)列滿足,若,則的所有可能值的和為______;14.設(shè)等差數(shù)列的前項(xiàng)和為,若,,則的最小值為______.15.已知、、分別是的邊、、的中點(diǎn),為的外心,且,給出下列等式:①;②;③;④其中正確的等式是_________(填寫所有正確等式的編號(hào)).16.已知函數(shù)那么的值為.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在四棱錐中,底面為平行四邊形,點(diǎn)為中點(diǎn),且.(1)證明:平面;(2)證明:平面平面.18.已知圓心為的圓,滿足下列條件:圓心位于軸正半軸上,與直線相切,且被軸截得的弦長為,圓的面積小于13.(1)求圓的標(biāo)準(zhǔn)方程:(2)設(shè)過點(diǎn)的直線與圓交于不同的兩點(diǎn),,以,為鄰邊作平行四邊形.是否存在這樣的直線,使得直線與恰好平行?如果存在,求出的方程:如果不存在,請(qǐng)說明理由.19.已知,,求證:(1);(2).20.已知向量,其中,記函數(shù),已知的最小正周期為.(1)求;(2)當(dāng)時(shí),試求函數(shù)的值域.21.己知函數(shù).(1)若,,求;(2)當(dāng)為何值時(shí),取得最大值,并求出最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解析】

利用三角形面積公式列出關(guān)系式,把,已知面積代入求出的長,再利用余弦定理即可求出的長.【詳解】∵在中,,且的面積為,

∴,

解得:,

由余弦定理得:,

則.

故選D.【點(diǎn)睛】此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.2、A【解析】

根據(jù)題干畫出簡(jiǎn)圖,在直角中,通過弦心距和半徑關(guān)系通過勾股定理求解即可。【詳解】圓的圓心與點(diǎn)關(guān)于直線對(duì)稱,所以,,設(shè)圓的半徑為,如下圖,圓心到直線的距離為:,,【點(diǎn)睛】直線和圓相交問題一般兩種方法:第一,通過弦心距d和半徑r的關(guān)系,通過勾股定理求解即可。第二,直線方程和圓的方程聯(lián)立,則。兩種思路,此題屬于中檔題型。3、D【解析】

根據(jù)題中數(shù)據(jù),直接計(jì)算出平均值與方差,即可得出結(jié)果.【詳解】由題中數(shù)據(jù)可得,,,所以;又,,所以.故選D【點(diǎn)睛】本題主要考查平均數(shù)與方差的比較,熟記公式即可,屬于基礎(chǔ)題型.4、D【解析】

根據(jù)直線的斜率公式,準(zhǔn)確計(jì)算,即可求解,得到答案.【詳解】由題意,根據(jù)直線的斜率公式,可得直線的斜率,故選D.【點(diǎn)睛】本題主要考查了直線的斜率公式的應(yīng)用,其中解答中熟記直線的斜率公式,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.5、D【解析】畫出表示的可行域,如圖所示的開放區(qū)域,平移直線,由圖可知,當(dāng)直線經(jīng)過時(shí),直線在縱軸上的截距取得最大值,此時(shí)有最小值,無最大值,的取值范圍是,故選A.【方法點(diǎn)晴】本題主要考查線性規(guī)劃中利用可行域求目標(biāo)函數(shù)的最值,屬簡(jiǎn)單題.求目標(biāo)函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實(shí)線還是虛線);(2)找到目標(biāo)函數(shù)對(duì)應(yīng)的最優(yōu)解對(duì)應(yīng)點(diǎn)(在可行域內(nèi)平移變形后的目標(biāo)函數(shù),最先通過或最后通過的頂點(diǎn)就是最優(yōu)解);(3)將最優(yōu)解坐標(biāo)代入目標(biāo)函數(shù)求出最值.6、B【解析】

由題得在底面的投影為的外心,故為的中點(diǎn),再利用數(shù)量積計(jì)算得解.【詳解】依題意,在底面的投影為的外心,因?yàn)?,故為的中點(diǎn),,故選B.【點(diǎn)睛】本題主要考查平面向量的運(yùn)算,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平,屬于基礎(chǔ)題.7、C【解析】

首先,由已知條件可知,再有,這樣可用表示出.【詳解】∵,∴,,∴,∴.故選C.【點(diǎn)睛】本題考查平面向量基本定理,解題時(shí)用向量加減法表示出,然后用基底表示即可.8、A【解析】

根據(jù)等比數(shù)列的前n項(xiàng)和公式化簡(jiǎn)S10=10,S30=70,分別求得關(guān)于q的兩個(gè)關(guān)系式,可求得公比q的10次方的值,再利用前n項(xiàng)和公式計(jì)算S40即可.【詳解】因?yàn)閧an}是等比數(shù)列,所以有,二式相除得,,整理得解得或(舍)所以有==所以=1.答案選A.【點(diǎn)睛】此題考查學(xué)生靈活運(yùn)用等比數(shù)列的前n項(xiàng)和的公式化簡(jiǎn)求值,是一道綜合題,有一定的運(yùn)算技巧,需學(xué)生在練習(xí)中慢慢培養(yǎng).9、A【解析】

由可得四邊形為平行四邊形,由·=0得四邊形的對(duì)角線垂直,故可得四邊形為菱形.【詳解】∵,∴與平行且相等,∴四邊形為平行四邊形.又,∴,即平行四邊形的對(duì)角線互相垂直,∴平行四邊形為菱形.故選A.【點(diǎn)睛】本題考查向量相等和向量數(shù)量積的的應(yīng)用,解題的關(guān)鍵是正確理解有關(guān)的概念,屬于基礎(chǔ)題.10、D【解析】

求出圓的圓心坐標(biāo),由直線經(jīng)過圓心代入解得.【詳解】解:所以的圓心為因?yàn)橹本€平分圓的周長所以直線過圓心,即解得,故選:D.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

易證明中,且周長為,其中為定值,故只需考慮的最小值即可.【詳解】由題,棱長均為2的三棱錐,故該三棱錐的四個(gè)面均為正三角形.又因?yàn)?故.故.且分別為上的中點(diǎn),故.故周長為.故只需求的最小值即可.易得當(dāng)時(shí)取得最小值為.故周長的最小值為.故答案為:【點(diǎn)睛】本題主要考查了立體幾何中的距離最值問題,需要根據(jù)題意找到定量以及變量的最值情況即可.屬于中檔題.12、【解析】

繞旋轉(zhuǎn)一周得到的幾何體是圓錐,點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像,根據(jù)圖像判斷出圓的下頂點(diǎn)距離平面的距離最大,解三角形求得這個(gè)距離的最大值.【詳解】繞旋轉(zhuǎn)一周得到的幾何體是圓錐,故點(diǎn)的軌跡是圓.過作平面平面,交平面于.的軌跡在平面內(nèi).畫出圖像如下圖所示,根據(jù)圖像作法可知,當(dāng)位于圓心的正下方點(diǎn)位置時(shí),到平面的距離最大.在平面內(nèi),過作,交于.在中,,.所以①.其中,,所以①可化為.故答案為:【點(diǎn)睛】本小題主要考查旋轉(zhuǎn)體的概念,考查空間點(diǎn)到面的距離的最大值的求法,考查空間想象能力和運(yùn)算能力,屬于中檔題.13、36【解析】

根據(jù)條件得到的遞推關(guān)系,從而判斷出的類型求解出可能的通項(xiàng)公式,即可計(jì)算出的所有可能值,并完成求和.【詳解】因?yàn)?,所以或,?dāng)時(shí),是等差數(shù)列,,所以;當(dāng)時(shí),是等比數(shù)列,,所以,所以的所有可能值之和為:.故答案為:.【點(diǎn)睛】本題考查等差和等比數(shù)列的判斷以及求數(shù)列中項(xiàng)的值,難度一般.已知數(shù)列滿足(為常數(shù)),則是公差為的等差數(shù)列;已知數(shù)列滿足,則是公比為的等比數(shù)列.14、【解析】

用基本量法求出數(shù)列的通項(xiàng)公式,由通項(xiàng)公式可得取最小值時(shí)的值,從而得的最小值.【詳解】設(shè)數(shù)列公差為,則由已知得,解得,∴,,,又,、∴的最小值為.故答案為:..【點(diǎn)睛】本題考查等差數(shù)列的前項(xiàng)和的最值.首項(xiàng)為負(fù)且遞增的等差數(shù)列,滿足的最大的使得最小,首項(xiàng)為正且遞減的等差數(shù)列,滿足的最大的使得最大,當(dāng)然也可把表示為的二次函數(shù),由二次函數(shù)知識(shí)求得最值.15、①②④.【解析】

根據(jù)向量的中點(diǎn)性質(zhì)與向量的加法運(yùn)算,可判斷①②③.【詳解】、、分別是的邊、、的中點(diǎn),為的外心,且,設(shè)三條中線交點(diǎn)為G,如下圖所示:對(duì)于①,由三角形中線性質(zhì)及向量加法運(yùn)算可知,所以①正確;對(duì)于②,,所以②正確;對(duì)于③,,所以③錯(cuò)誤;對(duì)于,由外心性質(zhì)可知,所以故正確.綜上可知,正確的為①②④.故答案為:①②④.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,三角形外心的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.16、【解析】試題分析:因?yàn)楹瘮?shù)所以==.考點(diǎn):本題主要考查分段函數(shù)的概念,計(jì)算三角函數(shù)值.點(diǎn)評(píng):基礎(chǔ)題,理解分段函數(shù)的概念,代入計(jì)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)證明見解析【解析】

(1)連接交于點(diǎn),連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【詳解】(1)連接交于點(diǎn),連接,因?yàn)榈酌鏋槠叫兴倪呅危詾橹悬c(diǎn).在中,又為中點(diǎn),所以.又平面,平面,所以平面.(2)因?yàn)榈酌鏋槠叫兴倪呅?,所?又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【點(diǎn)睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法是平行投影或中心投影,我們也可以通過面面平行證線面平行,這個(gè)方法的關(guān)鍵是構(gòu)造過已知直線的平面,證明該平面與已知平面平行.線面垂直的判定可由線線垂直得到,注意線線是相交的,也可由面面垂直得到,注意線在面內(nèi)且線垂直于兩個(gè)平面的交線.而面面垂直的證明可以通過線面垂直得到,也可以通過證明二面角是直二面角.18、(1).(2)不存在這樣的直線.【解析】

試題分析:(I)用待定系數(shù)法即可求得圓C的標(biāo)準(zhǔn)方程;(Ⅱ)首先考慮斜率不存在的情況.當(dāng)斜率存在時(shí),設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2).l與圓C相交于不同的兩點(diǎn),那么Δ>0.由題設(shè)及韋達(dá)定理可得k與x1、x2之間關(guān)系式,進(jìn)而求出k的值.若k的值滿足Δ>0,則存在;若k的值不滿足Δ>0,則不存在.試題解析:(I)設(shè)圓C:(x-a)2+y2=R2(a>0),由題意知解得a=1或a=,又∵S=πR2<13,∴a=1,∴圓C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=1.(Ⅱ)當(dāng)斜率不存在時(shí),直線l為:x=0不滿足題意.當(dāng)斜率存在時(shí),設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2),又∵l與圓C相交于不同的兩點(diǎn),聯(lián)立消去y得:(1+k2)x2+(6k-2)x+6=0,∴Δ=(6k-2)2-21(1+k2)=3k2-6k-5>0,解得或.x1+x2=,y1+y2=k(x1+x2)+6=,,,假設(shè)∥,則,∴,解得,假設(shè)不成立.∴不存在這樣的直線l.考點(diǎn):1、圓的方程;2、直線與圓的位置關(guān)系.19、(1)證明見詳解;(2)證明見詳解.【解析】

(1)利用不等式性質(zhì),得,再證,最后證明;(2)先證,再證明.【詳解】證明:(1)因?yàn)?所以,于是,即,由,得.(2)因?yàn)?,所,又因?yàn)?,所以,所?【點(diǎn)睛】本題考查利用不等式性質(zhì)證明不等式,需要熟練掌握不等式的性質(zhì),屬綜合基礎(chǔ)題.20、(1)1(2)【解析】

(1)先根據(jù)向量數(shù)列積得關(guān)系式,再根據(jù)二倍角公式以及配角公式化為基本三角函數(shù)形式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論