版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
遼寧省營口高中等重點協(xié)作校2025屆數(shù)學(xué)高一下期末復(fù)習(xí)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知,,,則的形狀為()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定2.在中,角,,所對的邊分別為,,,若,且,則的面積的最大值為()A. B. C. D.3.?dāng)?shù)列{an}的通項公式an=,若{an}前n項和為24,則n為().A.25 B.576 C.624 D.6254.已知如圖正方體中,為棱上異于其中點的動點,為棱的中點,設(shè)直線為平面與平面的交線,以下關(guān)系中正確的是()A. B.C.平面 D.平面5.在中,,,分別為角,,的對邊,若的面為,且,則()A.1 B. C. D.6.若某群體中的成員只用現(xiàn)金支付的概率為0.45,既用現(xiàn)金支付也用非現(xiàn)金支付的概率為0.15,則不用現(xiàn)金支付的概率為A.0.3 B.0.4 C.0.6 D.0.77.某程序框圖如圖所示,若輸出的結(jié)果為,則判斷框內(nèi)應(yīng)填入的條件可以為()A. B. C. D.8.已知角的終邊經(jīng)過點(3,-4),則的值為()A. B. C. D.9.某學(xué)校美術(shù)室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機(jī)抽取2幅進(jìn)行展覽,則恰好抽到2幅不同種類的概率為()A. B. C. D.10.“”是“函數(shù)的圖像關(guān)于直線對稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要二、填空題:本大題共6小題,每小題5分,共30分。11.在等比數(shù)列中,若,則等于__________.12.若兩個正實數(shù)滿足,且不等式有解,則實數(shù)的取值范圍是____________.13.已知,,若,則________.14.如圖,網(wǎng)格紙的小正方形的邊長是1,在其上用粗線畫出了某多面體的三視圖,則這個多面體最長的一條棱的長為______.15.設(shè)函數(shù)滿足,當(dāng)時,,則=________.16.已知,是平面內(nèi)兩個互相垂直的單位向量,若向量滿足,則的最大值是.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知數(shù)列前項和為,滿足,(1)證明:數(shù)列是等差數(shù)列,并求;(2)設(shè),求證:.18.在中,成等差數(shù)列,分別為的對邊,并且,,求.19.如圖,在△ABC中,已知AB=4,AC=6,點E為AB的中點,點D、F在邊BC、AC上,且,,EF交AD于點P.(Ⅰ)若∠BAC=,求與所成角的余弦值;(Ⅱ)求的值.20.如圖,已知是半徑為1,圓心角為的扇形,是扇形狐上的動點,點分別在半徑上,且是平行四邊形,記,四邊形的面積為,問當(dāng)取何值時,最大?的最大值是多少?21.已知函數(shù),作如下變換:.(1)分別求出函數(shù)的對稱中心和單調(diào)增區(qū)間;(2)寫出函數(shù)的解析式、值域和最小正周期.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
由正弦定理得出,從而得出可能為鈍角或銳角,分類討論這兩種情況,結(jié)合正弦函數(shù)的單調(diào)性即可判斷.【詳解】由正弦定理得可能為鈍角或銳角當(dāng)為鈍角時,,符合題意,所以為鈍角三角形;當(dāng)為銳角時,由于在區(qū)間上單調(diào)遞增,則,所以,即為鈍角三角形綜上,為鈍角三角形故選:A【點睛】本題主要考查了利用正弦定理判斷三角形的形狀,屬于中檔題.2、A【解析】
由以及,結(jié)合二倍角的正切公式,可得,根據(jù)三角形的內(nèi)角的范圍可得,由余弦定理以及基本不等式可得,再根據(jù)面積公式可得答案.【詳解】因為,且,所以,所以,則.由于為定值,由余弦定理得,即.根據(jù)基本不等式得,即,當(dāng)且僅當(dāng)時,等號成立.所以.故選:A【點睛】本題考查了二倍角的正切公式,考查了余弦定理,考查了基本不等式,考查了三角形的面積公式,屬于中檔題.3、C【解析】an==-(),前n項和Sn=-[(1-)+(-)]+…+()]=-1=24,故n=624.故選C.4、C【解析】
根據(jù)正方體性質(zhì),以及線面平行、垂直的判定以及性質(zhì)定理即可判斷.【詳解】因為在正方體中,,且平面,平面,所以平面,因為平面,且平面平面,所以有,而,則與不平行,故選項不正確;若,則,顯然與不垂直,矛盾,故選項不正確;若平面,則平面,顯然與正方體的性質(zhì)矛盾,故不正確;而因為平面,平面,所以有平面,所以選項C正確,.【點睛】本題考查了線線、線面平行與垂直的關(guān)系判斷,屬于中檔題.5、D【解析】
根據(jù)三角形的面積公式以及余弦定理進(jìn)行化簡求出的值,然后利用兩角和差的正弦公式進(jìn)行求解即可.【詳解】解:由,得,∵,∴,即即,則,∵,∴,∴,即,則,故選D.【點睛】本題主要考查解三角形的應(yīng)用,結(jié)合三角形的面積公式以及余弦定理求出的值以及利用兩角和差的正弦公式進(jìn)行計算是解決本題的關(guān)鍵.6、B【解析】
分析:由公式計算可得詳解:設(shè)事件A為只用現(xiàn)金支付,事件B為只用非現(xiàn)金支付,則因為所以,故選B.點睛:本題主要考查事件的基本關(guān)系和概率的計算,屬于基礎(chǔ)題.7、D【解析】
由已知可得,該程序是利用循環(huán)結(jié)構(gòu)計算輸出變量S的值,模擬過程分別求出變量的變化情況可的結(jié)果.【詳解】程序在運行過程中,判斷框前的變量的值如下:k=1,S=1;k=2,S=4;k=3,S=11,k=4,S=26;此時應(yīng)該結(jié)束循環(huán)體,并輸出S的值為26,所以判斷框應(yīng)該填入條件為:故選D【點睛】本題主要考查了程序框圖,屬于基礎(chǔ)題.8、A【解析】
先求出的值,即得解.【詳解】由題得,,所以.故選A【點睛】本題主要考查三角函數(shù)的坐標(biāo)定義,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.9、B【解析】
算出基本事件的總數(shù)和隨機(jī)事件中基本事件的個數(shù),利用古典概型的概率的計算公式可求概率.【詳解】設(shè)為“恰好抽到2幅不同種類”某學(xué)校美術(shù)室收藏有6幅國畫,分別為人物、山水、花鳥各2幅,現(xiàn)從中隨機(jī)抽取2幅進(jìn)行展覽,基本事件總數(shù),恰好抽到2幅不同種類包含的基本事件個數(shù),則恰好抽到2幅不同種類的概率為.故選B.【點睛】計算出所有的基本事件的總數(shù)及隨機(jī)事件中含有的基本事件的個數(shù),利用古典概型的概率計算即可.計數(shù)時應(yīng)該利用排列組合的方法.10、A【解析】
根據(jù)充分必要條件的判定,即可得出結(jié)果.【詳解】當(dāng)時,是函數(shù)的對稱軸,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的充分條件,當(dāng)函數(shù)的圖像關(guān)于直線對稱時,,推不出,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的不必要條件,綜上選.【點睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對稱軸,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由等比數(shù)列的性質(zhì)可得,,代入式子中運算即可.【詳解】解:在等比數(shù)列中,若故答案為:【點睛】本題考查等比數(shù)列的下標(biāo)和性質(zhì)的應(yīng)用.12、【解析】試題分析:因為不等式有解,所以,因為,且,所以,當(dāng)且僅當(dāng),即時,等號是成立的,所以,所以,即,解得或.考點:不等式的有解問題和基本不等式的求最值.【方法點晴】本題主要考查了基本不等式在最值中的應(yīng)用,不等式的有解問題,在應(yīng)用基本不等式求解最值時,呀注意“一正、二定、三相等”的判斷,運用基本不等式解題的關(guān)鍵是尋找和為定值或是積為定值,難點在于如何合理正確的構(gòu)造出定值,對于不等式的有解問題一般選用參數(shù)分離法,轉(zhuǎn)化為函數(shù)的最值或借助數(shù)形結(jié)合法求解,屬于中檔試題.13、【解析】
先算出的坐標(biāo),然后利用即可求出【詳解】因為,所以因為,所以即,解得故答案為:【點睛】本題考查的是向量在坐標(biāo)形式下的相關(guān)計算,較簡單.14、【解析】
試題分析:由三視圖知,幾何體是一個四棱錐,四棱錐的底面是一個正方形,邊長是2,四棱錐的一條側(cè)棱和底面垂直,且這條側(cè)棱長是2,這樣在所有的棱中,連接與底面垂直的側(cè)棱的頂點與相對的底面的頂點的側(cè)棱是最長的長度是,考點:三視圖點評:本題考查由三視圖還原幾何體,所給的是一個典型的四棱錐,注意觀察三視圖,看出四棱錐的一條側(cè)棱與底面垂直.15、【解析】
由已知得f()=f()+sin=f()+sin+sin=f()+sin+sin+sin,由此能求出結(jié)果.【詳解】∵函數(shù)f(x)(x∈R)滿足f(x+π)=f(x)+sinx,當(dāng)0≤x<π時,f(x)=0,∴f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=0+=.故答案為:.【點睛】本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運用.16、【解析】
,,是平面內(nèi)兩個相互垂直的單位向量,∴,∴,,,為與的夾角,∵是平面內(nèi)兩個相互垂直的單位向量∴,即,所以當(dāng)時,即與共線時,取得最大值為,故答案為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)見解析.【解析】(1)由可得,當(dāng)時,,兩式相減可是等差數(shù)列,結(jié)合等差數(shù)列的通項公式可求進(jìn)而可求(2)由(1)可得,利用裂項相消法可求和,即可證明.試題分析:(1)(2)試題解析:(1)由知,當(dāng)即所以而故數(shù)列是以1為首項,1為公差的等差數(shù)列,且(2)因為所以考點:數(shù)列遞推式;等差關(guān)系的確定;數(shù)列的求和18、或.【解析】
先算出,從而得到,也就是,結(jié)合面積得到,再根據(jù)余弦定理可得,故可解得的大小.【詳解】∵成等差數(shù)列,∴,又,∴,∴.所以,所以,①又,∴.②由①②,得,,而由余弦定理可知∴即.③聯(lián)立③與②解得或,綜上,或.【點睛】三角形中共有七個幾何量(三邊三角以及外接圓的半徑),一般地,知道其中的三個量(除三個角外),可以求得其余的四個量.(1)如果知道三邊或兩邊及其夾角,用余弦定理;(2)如果知道兩邊即一邊所對的角,用正弦定理(也可以用余弦定理求第三條邊);(3)如果知道兩角及一邊,用正弦定理.19、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)以AC所在直線為x軸,過B且垂直于AC的直線于AC的直線為y軸建系,得到,,,,再由向量數(shù)量積的坐標(biāo)表示,即可得出結(jié)果;(Ⅱ)先由A、P、D三點共線,得到,再由平面向量的基本定理,列出方程組,即可求出結(jié)果.【詳解】(Ⅰ)以AC所在直線為x軸,過B且垂直于AC的直線于AC的直線為y軸建系如圖,則,,,,∴,∴(Ⅱ)∵A、P、D三點共線,可設(shè)同理,可設(shè)由平面向量基本定理可得,解得∴,.【點睛】本題主要考查平面向量的夾角運算,以及平面向量的應(yīng)用,熟記向量的數(shù)量積運算,以及平面向量基本定理即可,屬于常考題型.20、當(dāng)時,最大,最大值為【解析】
設(shè),,在中,由余弦定理,基本不等式可得,根據(jù)三角形的面積公式即可求解.【詳解】解:設(shè),在中,由余弦定理得:,由基本不等式,,可得,當(dāng)且僅當(dāng)時取等號,∴,當(dāng)且僅當(dāng)時取等號,此時,∴當(dāng)時,最大,最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花主題活動策劃方案(3篇)
- 自制活動小屋方案策劃(3篇)
- 磚墊層施工方案(3篇)
- 大白-涂料施工方案(3篇)
- 地面吸聲施工方案(3篇)
- 大型干渠施工方案(3篇)
- 放學(xué)音樂活動方案策劃(3篇)
- 企業(yè)國際化運營與管理規(guī)范(標(biāo)準(zhǔn)版)
- 短視頻直播策劃方案
- 2025年高職云計算技術(shù)與應(yīng)用(云計算應(yīng)用)試題及答案
- 設(shè)計公司報賬管理辦法
- DB51∕T 3045-2023 四川省社會保險基本公共服務(wù)規(guī)范
- 畢業(yè)設(shè)計(論文)-自動展開曬衣架設(shè)計
- 智能化系統(tǒng)在鐵路裝備檢修中的應(yīng)用-洞察闡釋
- TCPQSXF006-2023消防水帶產(chǎn)品維護(hù)更換及售后服務(wù)
- 2025四川眉山市國有資本投資運營集團(tuán)有限公司招聘50人筆試參考題庫附帶答案詳解
- 邊坡噴錨施工方案
- YS/T 3045-2022埋管滴淋堆浸提金技術(shù)規(guī)范
- 項目進(jìn)度跟進(jìn)及完成情況匯報總結(jié)報告
- 峨眉山城市介紹旅游宣傳課件
- 浙江省溫州市樂清市2023-2024學(xué)年五年級上學(xué)期期末語文試題
評論
0/150
提交評論