潮州市潮安縣達標名校中考數學最后一模試卷及答案解析_第1頁
潮州市潮安縣達標名校中考數學最后一模試卷及答案解析_第2頁
潮州市潮安縣達標名校中考數學最后一模試卷及答案解析_第3頁
潮州市潮安縣達標名校中考數學最后一模試卷及答案解析_第4頁
潮州市潮安縣達標名校中考數學最后一模試卷及答案解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

潮州市潮安縣達標名校中考數學最后一模試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ABC中,AB=2,AC=3,1<BC<5,分別以AB、BC、AC為邊向外作正方形ABIH、BCDE和正方形ACFG,則圖中陰影部分的最大面積為()A.6 B.9 C.11 D.無法計算2.下列運算正確的是()A.(﹣2a)3=﹣6a3 B.﹣3a2?4a3=﹣12a5C.﹣3a(2﹣a)=6a﹣3a2 D.2a3﹣a2=2a3.下列命題中,真命題是()A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離4.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.65.有理數a、b在數軸上的位置如圖所示,則下列結論中正確的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>06.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.7.將直線y=﹣x+a的圖象向右平移2個單位后經過點A(3,3),則a的值為()A.4B.﹣4C.2D.﹣28.已知一個等腰三角形的兩邊長分別是2和4,則該等腰三角形的周長為()A.8或10 B.8 C.10 D.6或129.已知一元二次方程的兩個實數根分別是x1、x2則x12x2x1x22的值為()A.-6 B.-3 C.3 D.610.如圖,BD為⊙O的直徑,點A為弧BDC的中點,∠ABD=35°,則∠DBC=()A.20° B.35° C.15° D.45°11.弘揚社會主義核心價值觀,推動文明城市建設.根據“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數2341分數80859095則得分的眾數和中位數分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.512.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:x2﹣10x+24=_____.14.若圓錐的母線長為4cm,其側面積,則圓錐底面半徑為cm.15.如圖,直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,那么當y1>y2時,x的取值范圍是_____.16.“五一勞動節(jié)”,王老師將全班分成六個小組開展社會實踐活動,活動結束后,隨機抽取一個小組進行匯報展示.第五組被抽到的概率是___.17.如圖①,四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設P點的運動時間為t秒,△PAD的面積為S,S關于t的函數圖象如圖②所示,當P運動到BC中點時,△PAD的面積為______.18.的相反數是_____,倒數是_____,絕對值是_____三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,連結AE、BF.求證:(1)AE=BF;(2)AE⊥BF.20.(6分)已知平行四邊形.尺規(guī)作圖:作的平分線交直線于點,交延長線于點(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);在(1)的條件下,求證:.21.(6分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.22.(8分)如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F兩點,再分別以E,F為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,連接AP,交CD于點M,若∠ACD=110°,求∠CMA的度數______.23.(8分)如圖,正方形ABCD中,BD為對角線.(1)尺規(guī)作圖:作CD邊的垂直平分線EF,交CD于點E,交BD于點F(保留作圖痕跡,不要求寫作法);(2)在(1)的條件下,若AB=4,求△DEF的周長.24.(10分)如圖,已知△ABC內接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數;(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.25.(10分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結果保留根號)26.(12分)如圖,將一張直角三角形ABC紙片沿斜邊AB上的中線CD剪開,得到△ACD,再將△ACD沿DB方向平移到△A′C′D′的位置,若平移開始后點D′未到達點B時,A′C′交CD于E,D′C′交CB于點F,連接EF,當四邊形EDD′F為菱形時,試探究△A′DE的形狀,并判斷△A′DE與△EFC′是否全等?請說明理由.27.(12分)2018年10月23日,港珠澳大橋正式開通,成為橫亙在伶仃洋上的一道靚麗的風景線.大橋主體工程隧道的東、西兩端各設置了一個海中人工島,來銜接橋梁和海地隧道,西人工島上的點和東人工島上的點間的距離約為5.6千米,點是與西人工島相連的大橋上的一點,,,在一條直線上.如圖,一艘觀光船沿與大橋段垂直的方向航行,到達點時觀測兩個人工島,分別測得,與觀光船航向的夾角,,求此時觀光船到大橋段的距離的長(參考數據:,,,,,).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

有旋轉的性質得到CB=BE=BH′,推出C、B、H'在一直線上,且AB為△ACH'的中線,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到陰影部分面積之和為S△ABC的3倍,于是得到結論.【詳解】把△IBE繞B順時針旋轉90°,使BI與AB重合,E旋轉到H'的位置,∵四邊形BCDE為正方形,∠CBE=90°,CB=BE=BH′,∴C、B、H'在一直線上,且AB為△ACH'的中線,∴S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,當∠BAC=90°時,S△ABC的面積最大,S△BEI=S△CDF=S△ABC最大,∵∠ABC=∠CBG=∠ABI=90°,∴∠GBE=90°,∴S△GBI=S△ABC,所以陰影部分面積之和為S△ABC的3倍,又∵AB=2,AC=3,∴圖中陰影部分的最大面積為3××2×3=9,故選B.【點睛】本題考查了勾股定理,利用了旋轉的性質:旋轉前后圖形全等得出圖中陰影部分的最大面積是S△ABC的3倍是解題的關鍵.2、B【解析】

先根據同底數冪的乘法法則進行運算即可?!驹斀狻緼.;故本選項錯誤;B.﹣3a2?4a3=﹣12a5;故本選項正確;C.;故本選項錯誤;D.不是同類項不能合并;故本選項錯誤;故選B.【點睛】先根據同底數冪的乘法法則,冪的乘方,積的乘方,合并同類項分別求出每個式子的值,再判斷即可.3、D【解析】

根據兩圓的位置關系、直線和圓的位置關系判斷即可.【詳解】A.如果第一個圓上的點都在第二個圓的外部,那么這兩個圓外離或內含,A是假命題;B.如果一個點即在第一個圓上,又在第二個圓上,那么這兩個圓外切或內切或相交,B是假命題;C.如果一條直線上的點到圓心的距離等于半徑長,那么這條直線與這個圓相切或相交,C是假命題;D.如果一條直線上的點都在一個圓的外部,那么這條直線與這個圓相離,D是真命題;故選:D.【點睛】本題考查了兩圓的位置關系:設兩圓半徑分別為R、r,兩圓圓心距為d,則當d>R+r時兩圓外離;當d=R+r時兩圓外切;當R-r<d<R+r(R≥r)時兩圓相交;當d=R-r(R>r)時兩圓內切;當0≤d<R-r(R>r)時兩圓內含.4、C【解析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.5、C【解析】

利用數軸先判斷出a、b的正負情況以及它們絕對值的大小,然后再進行比較即可.【詳解】解:由a、b在數軸上的位置可知:a<1,b>1,且|a|>|b|,∴a+b<1,ab<1,a﹣b<1,a÷b<1.故選:C.6、D【解析】

畫出樹狀圖得出所有等可能的情況數,找出恰好是兩個紅球的情況數,即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數與總情況數之比.7、A【解析】

直接根據“左加右減”的原則求出平移后的解析式,然后把A(3,3)代入即可求出a的值.【詳解】由“右加左減”的原則可知,將直線y=-x+b向右平移2個單位所得直線的解析式為:y=-x+b+2,把A(3,3)代入,得3=-3+b+2,解得b=4.故選A.【點睛】本題考查了一次函數圖象的平移,一次函數圖象的平移規(guī)律是:①y=kx+b向左平移m個單位,是y=k(x+m)+b,向右平移m個單位是y=k(x-m)+b,即左右平移時,自變量x左加右減;②y=kx+b向上平移n個單位,是y=kx+b+n,向下平移n個單位是y=kx+b-n,即上下平移時,b的值上加下減.8、C【解析】試題分析:①4是腰長時,三角形的三邊分別為4、4、4,∵4+4=4,∴不能組成三角形,②4是底邊時,三角形的三邊分別為4、4、4,能組成三角形,周長=4+4+4=4,綜上所述,它的周長是4.故選C.考點:4.等腰三角形的性質;4.三角形三邊關系;4.分類討論.9、B【解析】

根據根與系數的關系得到x1+x2=1,x1?x2=﹣1,再把x12x2+x1x22變形為x1?x2(x1+x2),然后利用整體代入的方法計算即可.【詳解】根據題意得:x1+x2=1,x1?x2=﹣1,所以原式=x1?x2(x1+x2)=﹣1×1=-1.故選B.【點睛】本題考查了一元二次方程ax2+bx+c=0(a≠0)的根與系數的關系:若方程兩個為x1,x2,則x1+x2,x1?x2.10、A【解析】

根據∠ABD=35°就可以求出的度數,再根據,可以求出,因此就可以求得的度數,從而求得∠DBC【詳解】解:∵∠ABD=35°,∴的度數都是70°,∵BD為直徑,∴的度數是180°﹣70°=110°,∵點A為弧BDC的中點,∴的度數也是110°,∴的度數是110°+110°﹣180°=40°,∴∠DBC==20°,故選:A.【點睛】本題考查了等腰三角形性質、圓周角定理,主要考查學生的推理能力.11、A【解析】找中位數要把數據按從小到大的順序排列,位于最中間的一個數(或兩個數的平均數)為中位數;眾數是一組數據中出現次數最多的數據,可得答案.解:在這一組數據中90是出現次數最多的,故眾數是90;排序后處于中間位置的那個數,那么由中位數的定義可知,這組數據的中位數是87.5;故選:A.“點睛”本題考查了眾數、中位數的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數:將一組數據按照從小到大(或從大到小)的順序排列,如果數據的個數是奇數,則處于中間位置的數就是這組數據的中位數.如果這組數據的個數是偶數,則中間兩個數據的平均數就是這組數據的中位數.12、B【解析】

由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(x﹣4)(x﹣6)【解析】

因為(-4)×(-6)=24,(-4)+(-6)=-10,所以利用十字相乘法分解因式即可.【詳解】x2﹣10x+24=x2﹣10x+(-4)×(-6)=(x﹣4)(x﹣6)【點睛】本題考查的是因式分解,熟練掌握因式分解的方法是解題的關鍵.14、3【解析】∵圓錐的母線長是5cm,側面積是15πcm2,∴圓錐的側面展開扇形的弧長為:l==6π,∵錐的側面展開扇形的弧長等于圓錐的底面周長,∴r==3cm,15、﹣1<x<2【解析】

根據圖象得出取值范圍即可.【詳解】解:因為直線y1=kx+n(k≠0)與拋物線y2=ax2+bx+c(a≠0)分別交于A(﹣1,0),B(2,﹣3)兩點,所以當y1>y2時,﹣1<x<2,故答案為﹣1<x<2【點睛】此題考查二次函數與不等式,關鍵是根據圖象得出取值范圍.16、【解析】

根據概率是所求情況數與總情況數之比,可得答案.【詳解】因為共有六個小組,所以第五組被抽到的概率是,故答案為:.【點睛】本題考查了概率的知識.用到的知識點為:概率=所求情況數與總情況數之比.17、1【解析】解:由圖象可知,AB+BC=6,AB+BC+CD=10,∴CD=4,根據題意可知,當P點運動到C點時,△PAD的面積最大,S△PAD=×AD×DC=8,∴AD=4,又∵S△ABD=×AB×AD=2,∴AB=1,∴當P點運動到BC中點時,△PAD的面積=×(AB+CD)×AD=1,故答案為1.18、,【解析】∵只有符號不同的兩個數是互為相反數,∴的相反數是;∵乘積為1的兩個數互為倒數,∴的倒數是;∵負數得絕對值是它的相反數,∴絕對值是故答案為(1).(2).(3).三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解析】

(1)可以把要證明相等的線段AE,CF放到△AEO,△BFO中考慮全等的條件,由兩個等腰直角三角形得AO=BO,OE=OF,再找夾角相等,這兩個夾角都是直角減去∠BOE的結果,所以相等,由此可以證明△AEO≌△BFO;(2)由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,由此可以證明AE⊥BF【詳解】解:(1)證明:在△AEO與△BFO中,∵Rt△OAB與Rt△EOF等腰直角三角形,∴AO=OB,OE=OF,∠AOE=90°-∠BOE=∠BOF,∴△AEO≌△BFO,∴AE=BF;(2)延長AE交BF于D,交OB于C,則∠BCD=∠ACO由(1)知:∠OAC=∠OBF,∴∠BDA=∠AOB=90°,∴AE⊥BF.20、(1)見解析;(2)見解析.【解析】試題分析:(1)作∠BAD的平分線交直線BC于點E,交DC延長線于點F即可;(2)先根據平行四邊形的性質得出AB∥DC,AD∥BC,故∠1=∠2,∠3=∠1.再由AF平分∠BAD得出∠1=∠3,故可得出∠2=∠1,據此可得出結論.試題解析:(1)如圖所示,AF即為所求;(2)∵四邊形ABCD是平行四邊形,∴AB∥DC,AD∥BC,∴∠1=∠2,∠3=∠1.∵AF平分∠BAD,∴∠1=∠3,∴∠2=∠1,∴CE=CF.考點:作圖—基本作圖;平行四邊形的性質.21、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據題意畫出樹狀圖,然后根據概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關,正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.22、∠CMA=35°.【解析】

根據兩直線平行,同旁內角互補得出,再根據是的平分線,即可得出的度數,再由兩直線平行,內錯角相等即可得出結論.【詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【點睛】本題考查了角平分線的作法和意義,平行線的性質等知識解決問題.解題時注意:兩直線平行,內錯角相等.23、(1)見解析;(2)2+1.【解析】分析:(1)、根據中垂線的做法作出圖形,得出答案;(2)、根據中垂線和正方形的性質得出DF、DE和EF的長度,從而得出答案.詳解:(1)如圖,EF為所作;(2)解:∵四邊形ABCD是正方形,∴∠BDC=15°,CD=BC=1,又∵EF垂直平分CD,∴∠DEF=90°,∠EDF=∠EFD=15°,DE=EF=CD=2,∴DF=DE=2,∴△DEF的周長=DF+DE+EF=2+1.點睛:本題主要考查的是中垂線的性質,屬于基礎題型.理解中垂線的性質是解題的關鍵.24、(1)48°(1)證明見解析(3)【解析】

(1)連接CD,根據圓周角定理和垂直的定義可得結論;

(1)先根據等腰三角形的性質得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據同弧所對的圓周角和圓心角的關系可得結論;

(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設OF=a,則OA=OC=1x-a,根據勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠COF;(3)過O作OG⊥AB于G,設CF=x,∵tan∠CAF==,∴AF=1x,∵OC=OA,由(1)得:∠COF=∠OAG,∵∠OFC=∠AGO=90°,∴△COF≌△OAG,∴OG=CF=x,AG=OF,設OF=a,則OA=OC=1x﹣a,Rt△COF中,CO1=CF1+OF1,∴(1x﹣a)1=x1+a1,a=x,∴OF=AG=x,∵OA=OB,OG⊥AB,∴AB=1AG=x,∴.【點睛】圓的綜合題,考查了三角形的面積、垂徑定理、角平分線的性質、三角形全等的性質和判定以及解直角三角形,解題的關鍵是:(1)根據圓周角定理找出∠ACB+∠BCD=90°;(1)根據外角的性質和圓的性質得:;(3)利用三角函數設未知數,根據勾股定理列方程解決問題.25、米.【解析】試題分析:根據矩形的性質,得到對邊相等,設這條河寬為x米,則根據特殊角的三角函數值,可以表示出ED和BF,根據EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論