版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省大興安嶺漠河縣高中2025屆數(shù)學高一下期末綜合測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.根據頻數(shù)分布表,可以估計在這堆蘋果中,質量大于130克的蘋果數(shù)約占蘋果總數(shù)的()分組頻數(shù)13462A. B. C. D.2.在ΔABC中,角A、B、C所對的邊分別為a、b、c,A=45°,B=30°,b=2,則a=()A.2 B.63 C.223.在等差數(shù)列中,若,則()A.10 B.15 C.20 D.254.過點且垂直于直線的直線方程為()A. B.C. D.5.已知,,則()A. B. C. D.6.已知兩條直線m,n,兩個平面α,β,下列命題正確是()A.m∥n,m∥α?n∥α B.α∥β,m?α,n?β?m∥nC.α⊥β,m?α,n?β?m⊥n D.α∥β,m∥n,m⊥α?n⊥β7.已知圓柱的上、下底面的中心分別為,,過直線的平面截該圓柱所得的截面是面積為8的正方形,則該圓柱的表面積為A. B. C. D.8.《趣味數(shù)學·屠夫列傳》中有如下問題:“戴氏善屠,日益功倍。初日屠五兩,今三十日屠訖,問共屠幾何?”其意思為:“有一個姓戴的人善于屠肉,每一天屠完的肉是前一天的2倍,第一天屠了5兩肉,共屠了30天,問一共屠了多少兩肉?”()A. B. C. D.9.如圖,,是半徑為2的圓周上的定點,為圓周上的動點且,,則圖中陰影區(qū)域面積的最大值為()A. B. C. D.10.已知全集,集合,,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知,均為單位向量,它們的夾角為,那么__________.12.已知四棱錐的底面是邊長為的正方形,側棱長均為.若圓柱的一個底面的圓周經過四棱錐四條側棱的中點,另一個底面的圓心為四棱錐底面的中心,則該圓柱的體積為__________.13.若函數(shù)是奇函數(shù),其中,則__________.14.若是等比數(shù)列,,,則________15.已知點及其關于原點的對稱點均在不等式表示的平面區(qū)域內,則實數(shù)的取值范圍是____.16.若數(shù)列滿足,且,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,在平面直角坐標系xOy中,已知圓C:x2⑴若圓E的半徑為2,圓E與x軸相切且與圓C外切,求圓E的標準方程;⑵若過原點O的直線l與圓C相交于A,B兩點,且OA=AB,求直線l的方程.18.已知函數(shù),將的圖象向左平移個單位后得到的圖象,且在區(qū)間內的最大值為.(1)求實數(shù)的值;(2)求函數(shù)與直線相鄰交點間距離的最小值.19.的內角的對邊分別為,已知.(1)求;(2)若為銳角三角形,且,求面積的取值范圍.20.已知是等差數(shù)列的前項和,且,.(1)求通項公式;(2)若,求正整數(shù)的值.21.求過三點的圓的方程,并求這個圓的半徑和圓心坐標.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據頻數(shù)分布表計算出質量大于130克的蘋果的頻率,由此得出正確選項.【詳解】根據頻數(shù)分布表可知,所以質量大于克的蘋果數(shù)約占蘋果總數(shù)的.故選:C【點睛】本小題主要考查頻數(shù)分析表的閱讀與應用,屬于基礎題.2、C【解析】
利用正弦定理得到答案.【詳解】asin故答案選C【點睛】本題考查了正弦定理,意在考查學生的計算能力.3、C【解析】
設等差數(shù)列的公差為,得到,又由,代入即可求解,得到答案.【詳解】由題意,設等差數(shù)列的公差為,則,又由,故選C.【點睛】本題主要考查了等差數(shù)列的通項公式的應用,其中解答中熟記等差數(shù)列的通項公式,準確計算是解答的關鍵,著重考查了計算與求解能力,屬于基礎題,.4、C【解析】
先求出直線的斜率,再求出所求直線的斜率,再利用直線的點斜式方程求解.【詳解】由題得直線的斜率為,所以所求的直線的斜率為,所以所求的直線方程為即.故選:C【點睛】本題主要考查互相垂直直線的性質,考查直線方程的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.5、D【解析】由題意可得,即,則,所以,即,也即,所以,應選答案D.點睛:解答本題的關鍵是借助題設中的條件獲得,進而得到,求得,從而求出使得問題獲解.6、D【解析】
在A中,n∥α或n?α;在B中,m與n平行或異面;在C中,m與n相交、平行或異面;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β.【詳解】由兩條直線m,n,兩個平面α,β,知:在A中,m∥n,m∥α?n∥α或n?α,故A錯誤;在B中,α∥β,m?α,n?β?m與n平行或異面,故B錯誤;在C中,α⊥β,m?α,n?β?m與n相交、平行或異面,故C錯誤;在D中,由線面垂直的判定定理得:α∥β,m∥n,m⊥α?n⊥β,故D正確.故選:D.【點評】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.7、B【解析】分析:首先根據正方形的面積求得正方形的邊長,從而進一步確定圓柱的底面圓半徑與圓柱的高,從而利用相關公式求得圓柱的表面積.詳解:根據題意,可得截面是邊長為的正方形,結合圓柱的特征,可知該圓柱的底面為半徑是的圓,且高為,所以其表面積為,故選B.點睛:該題考查的是有關圓柱的表面積的求解問題,在解題的過程中,需要利用題的條件確定圓柱的相關量,即圓柱的底面圓的半徑以及圓柱的高,在求圓柱的表面積的時候,一定要注意是兩個底面圓與側面積的和.8、D【解析】
根據題意,得到該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,由題中熟記,以及等比數(shù)列的求和公式,即可得出結果.【詳解】由題意,該屠戶每天屠的肉成等比數(shù)列,記首項為,公比為,前項和為,所以,,因此.故選:D【點睛】本題主要考查等比數(shù)列的應用,熟記等比數(shù)列的求和公式即可,屬于基礎題型.9、D【解析】
由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,運用扇形面積公式和三角形的面積公式,計算可得所求最大值.【詳解】由題意可得,要求陰影區(qū)域的面積的最大值,即為直線,即有,到線段的距離為,,扇形的面積為,的面積為,,即有陰影區(qū)域的面積的最大值為.故選.【點睛】本題考查扇形面積公式和三角函數(shù)的恒等變換,考查化簡運算能力,屬于中檔題.10、A【解析】
本題根據交集、補集的定義可得.容易題,注重了基礎知識、基本計算能力的考查.【詳解】,則【點睛】易于理解集補集的概念、交集概念有誤.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】分析:由,均為單位向量,它們的夾角為,求出數(shù)量積,先將平方,再開平方即可的結果.詳解:∵,故答案為.點睛:平面向量數(shù)量積公式有兩種形式,一是,二是,主要應用以下幾個方面:(1)求向量的夾角,(此時往往用坐標形式求解);(2)求投影,在上的投影是;(3)向量垂直則;(4)求向量的模(平方后需求).12、.【解析】
根據棱錐的結構特點,確定所求的圓柱的高和底面半徑.【詳解】由題意四棱錐的底面是邊長為的正方形,側棱長均為,借助勾股定理,可知四棱錐的高為,.若圓柱的一個底面的圓周經過四棱錐四條側棱的中點,圓柱的底面半徑為,一個底面的圓心為四棱錐底面的中心,故圓柱的高為,故圓柱的體積為.【點睛】本題主要考查了圓柱與四棱錐的組合,考查了空間想象力,屬于基礎題.13、【解析】
定義域上的奇函數(shù),則【詳解】函數(shù)是奇函數(shù),所以,又,則所以填【點睛】定義域上的奇函數(shù),我們可以直接搭建方程,若定義域中則不能直接代指.14、【解析】
根據等比數(shù)列的通項公式求解公比再求和即可.【詳解】設公比為,則.故故答案為:【點睛】本題主要考查了等比數(shù)列的基本量求解,屬于基礎題型.15、【解析】
根據題意,設與關于原點的對稱,分析可得的坐標,由二元一次不等式的幾何意義可得,解可得的取值范圍,即可得答案.【詳解】根據題意,設與關于原點的對稱,則的坐標為,若、均在不等式表示的平面區(qū)域內,則有,解可得:,即的取值范圍為,;故答案為,.【點睛】本題考查二元一次不等式表示平面區(qū)域的問題,涉及不等式的解法,屬于基礎題.16、【解析】
對已知等式左右取倒數(shù)可整理得到,進而得到為等差數(shù)列;利用等差數(shù)列通項公式可求得,進而得到的通項公式,從而求得結果.【詳解】,即數(shù)列是以為首項,為公差的等差數(shù)列故答案為:【點睛】本題考查利用遞推公式求解數(shù)列通項公式的問題,關鍵是明確對于形式的遞推關系式,采用倒數(shù)法來進行推導.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(x+3)2+(y-2)2【解析】
(1)設出圓E的標準方程為(x-a)2+(y-b)2=r2,由圓E與x軸相切,可得b=r,由圓E與圓C外切,可得兩圓心距等于半徑之和,由此解出(2)法一:設出A點坐標為(x0,y0),根據OA=AB,可得到點B坐標,把A、B兩點坐標代入圓法二:設AB的中點為M,連結CM,CA,設出直線l的方程,由題求出CM的長,利用點到直線的距離即可得求出k值,從而得到直線l的方程【詳解】⑴設圓E的標準方程為(x-a)2+(y-b)2=r2因為圓E的半徑為2,與x軸相切,所以b=2因為圓E與圓C外切所以EC=3,即a由①②解得a=±3,b=2故圓E的標準方程為(x+3)2+⑵方法一;設A(因為OA=AB,所以A為OB的中點,從而B(2因為A,B都在圓C上所以x解得x0=-故直線l的方程為:y=±方法二:設AB的中點為M,連結CM,CA設AM=t,CM=d因為OA=AB,所以OM=3t在RtΔACM中,d2在RtΔOCM中,d2由③④解得d=由題可知直線l的斜率一定存在,設直線l的方程為y=kx則d=2k故直線l的方程為y=±【點睛】本題考查圓的標準方程與直線方程,解題關鍵是設出方程,找出關系式,屬于中檔題。18、(1)1;(2)【解析】
(1)將化簡可得,再由平移變換可得,由在區(qū)間內的最大值為,可得的值;(2)解方程,可得所求相交點距離的最小值.【詳解】解:(1)所以,,∴當時,即時,函數(shù)取得最大值,∴.(2)根據題意,令,,∴或,.解得或,.因為,當時取等號,∴相鄰交點間距離的最小值是.【點睛】本題主要考查三角函數(shù)的平移變化及三角恒等變換與三角函數(shù)的性質,屬于中檔題.19、(1);(2).【解析】
(1)利用正弦定理化簡題中等式,得到關于B的三角方程,最后根據A,B,C均為三角形內角解得.(2)根據三角形面積公式,又根據正弦定理和得到關于的函數(shù),由于是銳角三角形,所以利用三個內角都小于來計算的定義域,最后求解的值域.【詳解】(1)根據題意,由正弦定理得,因為,故,消去得.,因為故或者,而根據題意,故不成立,所以,又因為,代入得,所以.(2)因為是銳角三角形,由(1)知,得到,故,解得.又應用正弦定理,,由三角形面積公式有:.又因,故,故.故的取值范圍是【點睛】這道題考查了三角函數(shù)的基礎知識,和正弦定理或者余弦定理的使用(此題也可以用余弦定理求解),最后考查是銳角三角形這個條件的利用.考查的很全面,是一道很好的考題.20、(1)(2)41【解析】
(1)根據通項公式先求出公差,再求即可;(2)先表示出,求出的具體值,根據求即可【詳解】(1)由,,可得,則(2),,則,解得【點睛】本題考查等差數(shù)列通項公式和前項和公式的用法,屬于基礎題21、(x﹣4)2+(y+3)2=21,圓的半徑為【解析】
設出圓的一般方程,把代入所設,得到關于的方程組,求解,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 咸安區(qū)2026年面向教育部直屬師范大學公費師范畢業(yè)生專項招聘備考題庫及答案詳解1套
- 2026年生態(tài)環(huán)保產品采購合同
- 2025年浦發(fā)銀行昆明分行公開招聘備考題庫及答案詳解參考
- 2025年雙溪鄉(xiāng)人民政府關于公開選拔重點公益林護林員備考題庫及完整答案詳解一套
- 2025年大寧輔警招聘真題及答案
- 2025年嘉睿招聘(派遣至市第四人民醫(yī)院)備考題庫帶答案詳解
- 材料失效分析課程設計
- 幫別人做課程設計是否違法
- 2025年邵東市中醫(yī)醫(yī)院編外合同制專業(yè)技術人員招聘38人備考題庫及答案詳解參考
- 2025國家衛(wèi)生健康委醫(yī)院管理研究所護理管理與康復研究部實習人員招聘筆試重點題庫及答案解析
- 2026年動物檢疫檢驗員考試試題題庫及答案
- 中國淋巴瘤治療指南(2025年版)
- 2025年云南省人民檢察院聘用制書記員招聘(22人)考試筆試模擬試題及答案解析
- 療傷旅館商業(yè)計劃書
- 臨床腫瘤診療核心技巧
- 購買電影票合同范本
- 2025西部機場集團航空物流有限公司招聘考試筆試備考題庫及答案解析
- 2025年廣西公需科目答案6卷
- 生化檢測項目原理及臨床意義
- 玉米秸稈飼料銷售合同
- DGTJ08-10-2022 城鎮(zhèn)天然氣管道工程技術標準
評論
0/150
提交評論