版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆廣西賀州市中學(xué)高一下數(shù)學(xué)期末考試模擬試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè)函數(shù)(為常實數(shù))在區(qū)間上的最小值為,則的值等于()A.4 B.-6 C.-3 D.-42.某快遞公司在我市的三個門店,,分別位于一個三角形的三個頂點處,其中門店,與門店都相距,而門店位于門店的北偏東方向上,門店位于門店的北偏西方向上,則門店,間的距離為()A. B. C. D.3.在中,角A,B,C所對的邊分別為a,b,c,若,,則是()A.純角三角形 B.等邊三角形C.直角三角形 D.等腰直角三角形4.等差數(shù)列,,,則此數(shù)列前項和等于().A. B. C. D.5.設(shè)是平面內(nèi)的一組基底,則下面四組向量中,能作為基底的是()A.與 B.與C.與 D.與6.函數(shù)圖象的一個對稱中心和一條對稱軸可以是()A., B.,C., D.,7.若向量,且,則等于()A. B. C. D.8.某數(shù)學(xué)競賽小組有3名男同學(xué)和2名女同學(xué),現(xiàn)從這5名同學(xué)中隨機選出2人參加數(shù)學(xué)競賽(每人被選到的可能性相同).則選出的2人中恰有1名男同學(xué)和1名女同學(xué)的概率為()A. B. C. D.9.已知數(shù)列是公比不為1的等比數(shù)列,為其前n項和,滿足,且成等差數(shù)列,則()A. B.6 C.7 D.910.下列不等式正確的是()A.若,則 B.若,則C.若,則 D.若,則二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)直線與圓C:x2+y2-2ay-2=0相交于A,B兩點,若,則圓C的面積為________12.若,且,則的最小值為_______.13.命題“,”是________命題(選填“真”或“假”).14.在數(shù)列{}中,,則____.15.將邊長為1的正方形中,把沿對角線AC折起到,使平面⊥平面ABC,則三棱錐的體積為________.16.已知角的終邊上一點P的坐標(biāo)為,則____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在平行四邊形中,邊所在直線的方程為,點.(Ⅰ)求直線的方程;(Ⅱ)求邊上的高所在直線的方程.18.如圖,在正三棱柱中,邊的中點為,.⑴求三棱錐的體積;⑵點在線段上,且平面,求的值.19.在銳角中,角所對的邊分別為,已知,,.(1)求角的大??;(2)求的面積.20.(Ⅰ)已知向量,求與的夾角的余弦值;(Ⅱ)已知角終邊上一點,求的值.21.如圖,已知矩形ABCD中,,,M是以CD為直徑的半圓周上的任意一點(與C,D均不重合),且平面平面ABCD.(1)求證:平面平面BCM;(2)當(dāng)四棱錐的體積最大時,求AM與CD所成的角.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:,,,當(dāng)時,,故.考點:1、三角恒等變換;2、三角函數(shù)的性質(zhì).2、C【解析】
根據(jù)題意,作出圖形,結(jié)合圖形利用正弦定理,即可求解,得到答案.【詳解】如圖所示,依題意知,,,由正弦定理得:,則.故選C.【點睛】本題主要考查了三角形的實際應(yīng)用問題,其中解答中根據(jù)題意作出圖形,合理使用正弦定理求解是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.3、B【解析】
利用正弦定理結(jié)合條件,得到,再由,結(jié)合余弦定理,得到,從而得到答案.【詳解】在中,由正弦定理得,而,所以得到,即,為的內(nèi)角,所以,因為,所以,由余弦定理得.為的內(nèi)角,所以,所以,為等邊三角形.故選:B.【點睛】本題考查正弦定理和余弦定理判斷三角形形狀,屬于簡單題.4、B【解析】由a1+a2+a3=-24,a18+a19+a20=78,得得a1+a20=所以S20=故選D5、C【解析】
利用向量可以作為基底的條件是,兩個向量不共線,由此分別判定選項中的兩個向量是否共線即可.【詳解】由是平面內(nèi)的一組基底,所以和不共線,對應(yīng)選項A:,所以這2個向量共線,不能作為基底;對應(yīng)選項B:,所以這2個向量共線,不能作為基底;對應(yīng)選項D:,所以這2個向量共線,不能作為基底;對應(yīng)選項C:與不共線,能作為基底.故選:C.【點睛】本題主要考查基底的定義,判斷2個向量是否共線的方法,屬于基礎(chǔ)題.6、B【解析】
直接利用余弦型函數(shù)的性質(zhì)求出函數(shù)的對稱軸和對稱中心,即可得到答案.【詳解】由題意,函數(shù)的性質(zhì),令,解得,當(dāng)時,,即函數(shù)的一條對稱軸的方程為,令,解得,當(dāng)時,,即函數(shù)的一個對稱中心為,故選B.【點睛】本題主要考查了余弦型函數(shù)的性質(zhì)對稱軸和對稱中心的應(yīng)用,著重考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.7、B【解析】
根據(jù)坐標(biāo)形式下向量的平行對應(yīng)的等量關(guān)系,即可計算出的值,再根據(jù)坐標(biāo)形式下向量的加法即可求解出的坐標(biāo)表示.【詳解】因為且,所以,所以,所以.故選:B.【點睛】本題考查根據(jù)坐標(biāo)形式下向量的平行求解參數(shù)以及向量加法的坐標(biāo)運算,難度較易.已知,若則有.8、A【解析】
把5名學(xué)生編號,然后寫出任取2人的所有可能,按要求計數(shù)后可得概率.【詳解】3名男生編號為,兩名女生編號為,任選2人的所有情形為:,,共10種,其中恰有1名男生1名女生的有共6種,所以所求概率為.【點睛】本題考查古典概型,方法是列舉法.9、C【解析】
設(shè)等比數(shù)列的公比為,且不為1,由等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式,解方程可得首項和公比,再由等比數(shù)列的求和公式,可得答案.【詳解】數(shù)列是公比不為l的等比數(shù)列,滿足,即且成等差數(shù)列,得,即,解得,則.故選:C.【點睛】本題考查等差數(shù)列中項性質(zhì)和等比數(shù)列的通項公式和求和公式的運用,考查方程思想和運算能力,屬于基礎(chǔ)題.10、B【解析】試題分析:A.若c<0,則不等號改變,若c=0,兩式相等,故A錯誤;B.若,則,故,故B正確;C.若b=0,則表達是不成立故C錯誤;D.c=0時錯誤.考點:不等式的性質(zhì).二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】因為圓心坐標(biāo)與半徑分別為,所以圓心到直線的距離,則,解之得,所以圓的面積,應(yīng)填答案.12、【解析】
將變換為,展開利用均值不等式得到答案.【詳解】若,且,則時等號成立.故答案為【點睛】本題考查了均值不等式,“1”的代換是解題的關(guān)鍵.13、真【解析】當(dāng)時,成立,即命題“,”為真命題.14、1【解析】
直接利用等比數(shù)列的通項公式得答案.【詳解】解:在等比數(shù)列中,由,公比,得.故答案為:1.【點睛】本題考查等比數(shù)列的通項公式,是基礎(chǔ)題.15、【解析】
由面面垂直的性質(zhì)定理可得面,再結(jié)合三棱錐的體積的求法求解即可.【詳解】解:取中點,連接,因為四邊形為邊長為1的正方形,則,即,又平面⊥平面ABC,由面面垂直的性質(zhì)定理可得:面,且,則,故答案為:.【點睛】本題考查了三棱錐的體積的求法,重點考查了面面垂直的性質(zhì)定理,屬中檔題.16、【解析】
由已知先求,再由三角函數(shù)的定義可得即可得解.【詳解】解:由題意可得點到原點的距離,,由三角函數(shù)的定義可得,,,此時;故答案為.【點睛】本題主要考查任意角的三角函數(shù)的定義,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、解:(Ⅰ)∵是平行四邊形直線CD的方程是,即(Ⅱ)∵CE⊥ABCE所在直線方程為,.【解析】略18、(1)(2)【解析】
(1)由題可得平面,故,從而求得三棱錐的體積;(2)連接交于,連接交于,連結(jié),由平面可得,由正三棱柱的性質(zhì)可得,從而得到的值.【詳解】⑴因為為正三棱柱所以平面⑵連接交于,連接交于,連結(jié)因為//平面,平面,平面平面,所以,因為為正三棱柱,所以側(cè)面和側(cè)面為平行四邊形,從而有為的中點,于是為的中點所以,因為為邊的中點,所以也為邊中點,從而【點睛】本題考查三棱錐的體積,線面垂直的性質(zhì),正三棱柱的性質(zhì)等知識,屬于中檔題.19、(1);(2).【解析】試題分析:(1)先由正弦定理求得與的關(guān)系,然后結(jié)合已知等式求得的值,從而求得的值;(2)先由余弦定理求得的值,從而由的范圍取舍的值,進而由面積公式求解.試題解析:(1)在中,由正弦定理,得,即.又因為,所以.因為為銳角三角形,所以.(2)在中,由余弦定理,得,即.解得或.當(dāng)時,因為,所以角為鈍角,不符合題意,舍去.當(dāng)時,因為,又,所以為銳角三角形,符合題意.所以的面積.考點:1、正余弦定理;2、三角形面積公式.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)由已知分別求得及與,再由數(shù)量積求夾角計算結(jié)果;(Ⅱ)利用任意角的三角函數(shù)的定義求得sinα,再由三角函數(shù)的誘導(dǎo)公式化簡求值.【詳解】(Ⅰ)∵,∴,||=5,||,∴.(Ⅱ)∵P(﹣4,3)為角α終邊上一點,∴,.則sin2α.【點睛】本題考查利用數(shù)量積求向量的夾角,考查任意角的三角函數(shù)的定義,訓(xùn)練了利用誘導(dǎo)公式化簡求值,是基礎(chǔ)題.21、(1)證明見解析(2)【解析】
(1)只證明CM⊥平面ADM即可,即證明CM垂直于該平面內(nèi)的兩條相交直線,或者使用面面垂直的性質(zhì),本題的條件是平面CDM⊥平面ABCD,而M是以CD為直徑的半圓周上一點,能夠得到CM⊥DM,由面面垂直的性質(zhì)即可證明;(2)當(dāng)四棱錐M一ABCD的體積最大時,M為半圓周中點處,可得角MAB就是AM與CD所成的角,利用已知即可求解.【詳解】(1)證明:CD為直徑,所以CMDM,已知平面CDM平面ABCD,ADCD,AD平面CDM,所以ADCM又DMAD=DCM平面ADM又CM平面BCM,平面ADM平面BCM,(2)當(dāng)M為半圓弧CD的中點時
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 蘭州加固施工方案(3篇)
- 元旦開年活動策劃方案(3篇)
- 河南省焦作市2026屆高二數(shù)學(xué)第一學(xué)期期末學(xué)業(yè)質(zhì)量監(jiān)測模擬試題含解析
- 2026上海浦東新區(qū)基礎(chǔ)醫(yī)學(xué)院招聘教學(xué)科研人員19人備考題庫含答案詳解
- 銀行的控制制度
- 2026廣東東莞市沙田鎮(zhèn)社區(qū)衛(wèi)生服務(wù)中心第一期招聘納入崗位管理的編制外人員4人備考題庫及答案詳解1套
- 罕見腫瘤的個體化治療生活質(zhì)量干預(yù)措施實踐
- 積分財務(wù)制度
- 2026中電科金倉(北京)科技股份有限公司校園招聘備考題庫及答案詳解參考
- 私企服裝行業(yè)財務(wù)制度
- 2025財務(wù)經(jīng)理年終總結(jié)
- TCACM 1463-2023 糖尿病前期治未病干預(yù)指南
- 江蘇省淮安市2024-2025學(xué)年七年級上學(xué)期1月期末道德與法治
- 2024年度高速公路機電設(shè)備維護合同:某機電公司負責(zé)某段高速公路的機電設(shè)備維護2篇
- 癌癥患者生活質(zhì)量量表EORTC-QLQ-C30
- QCT55-2023汽車座椅舒適性試驗方法
- 孕產(chǎn)婦妊娠風(fēng)險評估表
- 消化系統(tǒng)疾病健康教育宣教
- 河南省洛陽市2023-2024學(xué)年九年級第一學(xué)期期末質(zhì)量檢測數(shù)學(xué)試卷(人教版 含答案)
- Unit-3-Reading-and-thinking課文詳解課件-高中英語人教版必修第二冊
- 新版出口報關(guān)單模板
評論
0/150
提交評論