版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2025屆山西省太原市山西大學(xué)附屬中學(xué)高一下數(shù)學(xué)期末統(tǒng)考試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.如圖所示,墻上掛有邊長為a的正方形木板,它的四個角的空白部分都是以正方形的頂點(diǎn)為圓心,半徑為的圓弧,某人向此板投鏢,假設(shè)每次都能擊中木板,且擊中木板上每個點(diǎn)的可能性都一樣,則它擊中陰影部分的概率是()A. B. C. D.與a的值有關(guān)聯(lián)2.在三棱錐中,,,,平面平面,則三棱錐外接球的表面積為()A. B. C. D.3.在等差數(shù)列中,如果,則數(shù)列前9項的和為()A.297 B.144 C.99 D.664.已知四棱錐的底面是正方形,側(cè)棱長均相等,E是線段AB上的點(diǎn)(不含端點(diǎn)).設(shè)SE與BC所成的角為,SE與平面ABCD所成的角為β,二面角S-AB-C的平面角為,則()A. B. C. D.5.已知點(diǎn),點(diǎn),點(diǎn)在圓上,則使得為直角三角形的點(diǎn)的個數(shù)為()A. B. C. D.6.設(shè)函數(shù),若對任意的實數(shù)x都成立,則的最小值為()A. B. C. D.17.已知等差數(shù)列的公差,若的前項之和大于前項之和,則()A. B. C. D.8.若向量,,則點(diǎn)B的坐標(biāo)為()A. B. C. D.9.如圖,水平放置的三棱柱的側(cè)棱長和底邊長均為4,且側(cè)棱垂直于底面,正視圖是邊長為4的正方形,則三棱柱的左視圖面積為()A. B. C. D.10.取一根長度為的繩子,拉直后在任意位置剪斷,則剪得兩段繩有一段長度不小于的概率是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知向量,滿足,且在方向上的投影是,則實數(shù)_______.12.若角的終邊經(jīng)過點(diǎn),則的值為________13.若角是第四象限角,則角的終邊在_____________14.?dāng)?shù)列定義為,則_______.15.若,則=_________________16.有6根細(xì)木棒,其中較長的兩根分別為,,其余4根均為,用它們搭成三棱錐,則其中兩條較長的棱所在的直線所成的角的余弦值為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知平面向量,且(1)若是與共線的單位向量,求的坐標(biāo);(2)若,且,設(shè)向量與的夾角為,求.18.直線的方程為.(1)若在兩坐標(biāo)軸上的截距相等,求的值;(2)若不經(jīng)過第二象限,求實數(shù)的取值范圍.19.(1)任意向軸上這一區(qū)間內(nèi)投擲一個點(diǎn),則該點(diǎn)落在區(qū)間內(nèi)的概率是多少?(2)已知向量,,若,分別表示一枚質(zhì)地均勻的正方體骰子(六個面的點(diǎn)數(shù)分別為1,2,3,4,5,6)先后拋擲兩次時第一次、第二次出現(xiàn)的點(diǎn)數(shù),求滿足的概率.20.已知等差數(shù)列的前n項和為,關(guān)于x的不等式的解集為.(1)求數(shù)列的通項公式;(2)若數(shù)列滿足,求數(shù)列的前n項和.21.若函數(shù)滿足且,則稱函數(shù)為“函數(shù)”.(1)試判斷是否為“函數(shù)”,并說明理由;(2)函數(shù)為“函數(shù)”,且當(dāng)時,,求的解析式,并寫出在上的單調(diào)遞增區(qū)間;(3)在(2)的條件下,當(dāng)時,關(guān)于的方程為常數(shù)有解,記該方程所有解的和為,求.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】試題分析:本題考查幾何概型問題,擊中陰影部分的概率為.考點(diǎn):幾何概型,圓的面積公式.2、D【解析】
結(jié)合題意,結(jié)合直線與平面垂直的判定和性質(zhì),得到兩個直角三角形,取斜邊的一半,即為外接球的半徑,結(jié)合球表面積計算公式,計算,即可.【詳解】過P點(diǎn)作,結(jié)合平面ABC平面PAC可知,,故,結(jié)合可知,,所以,結(jié)合所以,所以,故該外接球的半徑等于,所以球的表面積為,故選D.【點(diǎn)睛】考查了平面與平面垂直的性質(zhì),考查了直線與平面垂直的判定和性質(zhì),難度偏難.3、C【解析】試題分析:,,∴a4=13,a6=9,S9==99考點(diǎn):等差數(shù)列性質(zhì)及前n項和點(diǎn)評:本題考查了等差數(shù)列性質(zhì)及前n項和,掌握相關(guān)公式及性質(zhì)是解題的關(guān)鍵.4、C【解析】
根據(jù)題意,分別求出SE與BC所成的角、SE與平面ABCD所成的角β、二面角S-AB-C的平面角的正切值,由正四棱錐的線段大小關(guān)系即可比較大小.【詳解】四棱錐的底面是正方形,側(cè)棱長均相等,所以四棱錐為正四棱錐,(1)過作,交于,過底面中心作交于,連接,取中點(diǎn),連接,如下圖(1)所示:則;(2)連接如下圖(2)所示,則;(3)連接,則,如下圖(3)所示:因為所以,而均為銳角,所以故選:C.【點(diǎn)睛】本題考查了異面直線夾角、直線與平面夾角、平面與平面夾角的求法,屬于中檔題.5、D【解析】
分、、是直角三種情況討論,求出點(diǎn)的軌跡,將問題轉(zhuǎn)化為點(diǎn)的軌跡圖形與圓的公共點(diǎn)個數(shù)問題,即可得出正確選項.【詳解】①若為直角,則,設(shè)點(diǎn),,,則,即,此時,點(diǎn)的軌跡是以點(diǎn)為圓心,以為半徑的圓,圓與圓的圓心距為,,則圓與圓的相交,兩圓的公共點(diǎn)個數(shù)為;②若為直角,由于直線的斜率為,則直線的斜率為,直線的方程為,即,圓的圓心到直線的距離為,則直線與圓相交,直線與圓有個公共點(diǎn);③若為直角,則直線的方程為,圓的圓心到直線的距離為,直線與圓相離,直線與圓沒有公共點(diǎn).綜上所述,使得為直角三角形的點(diǎn)的個數(shù)為.故選:D.【點(diǎn)睛】本題考查符合條件的直角三角形的頂點(diǎn)個數(shù),解題的關(guān)鍵在于將問題轉(zhuǎn)化為直線與圓、圓與圓的公共點(diǎn)個數(shù)之和的問題,同時也考查了軌跡方程的求解,考查化歸與轉(zhuǎn)化思想以及分類討論思想的應(yīng)用,屬于難題.6、B【解析】
對任意的實數(shù)x都成立,說明三角函數(shù)f(x)在時取最大值,利用這個信息求ω的值.【詳解】由題意,當(dāng)時,取到最大值,所以,解得,因為,所以當(dāng)時,取到最小值.故選:B.【點(diǎn)睛】本題考查正弦函數(shù)的圖象及性質(zhì),三角函數(shù)的單調(diào)區(qū)間、對稱軸、對稱中心、最值等為常考題,本題屬于基礎(chǔ)題.7、C【解析】
設(shè)等差數(shù)列的前項和為,由并結(jié)合等差數(shù)列的下標(biāo)和性質(zhì)可得出正確選項.【詳解】設(shè)等差數(shù)列的前項和為,由,得,可得,故選:C.【點(diǎn)睛】本題考查等差數(shù)列性質(zhì)的應(yīng)用,解題時要充分利用等差數(shù)列下標(biāo)和與等差中項的性質(zhì),可以簡化計算,考查分析問題和解決問題的能力,屬于中等題.8、B【解析】
根據(jù)向量的坐標(biāo)運(yùn)算得到,得到答案.【詳解】,故.故選:.【點(diǎn)睛】本題考查了向量的坐標(biāo)運(yùn)算,意在考查學(xué)生的計算能力.9、A【解析】
根據(jù)題意,得出該幾何體左視圖的高和寬的長度,求出它的面積,即可求解.【詳解】根據(jù)題意,該幾何體左視圖的高是正視圖的高,所以左視圖的高為,又由左視圖的寬是俯視圖三角形的底邊上的高,所以左視圖的寬為,所以該幾何體的左視圖的面積為,故選A.【點(diǎn)睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據(jù)三視圖的規(guī)則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線,求解以三視圖為載體的空間幾何體的表面積與體積的關(guān)鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關(guān)系和數(shù)量關(guān)系,利用相應(yīng)公式求解.10、A【解析】
設(shè)其中一段的長度為,可得出另一段長度為,根據(jù)題意得出的取值范圍,再利用幾何概型的概率公式可得出所求事件的概率.【詳解】設(shè)其中一段的長度為,可得出另一段長度為,由于剪得兩段繩有一段長度不小于,則或,可得或.由于,所以,或.由幾何概型的概率公式可知,事件“剪得兩段繩有一段長度不小于”的概率為,故選:A.【點(diǎn)睛】本題考查長度型幾何概型概率公式的應(yīng)用,解題時要將問題轉(zhuǎn)化為區(qū)間型的幾何概型來計算概率,考查分析問題以及運(yùn)算求解能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、1【解析】
在方向上的投影為,把向量坐標(biāo)代入公式,構(gòu)造出關(guān)于的方程,求得.【詳解】因為,所以,解得:,故填:.【點(diǎn)睛】本題考查向量的數(shù)量積定義中投影的概念、及向量數(shù)量積的坐標(biāo)運(yùn)算,考查基本運(yùn)算能力.12、.【解析】
根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【詳解】由三角函數(shù)的定義可得,,故答案為.【點(diǎn)睛】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關(guān)鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎(chǔ)題.13、第二或第四象限【解析】
根據(jù)角是第四象限角,寫出角的范圍,即可求出角的終邊所在位置.【詳解】因為角是第四象限角,所以,即有,當(dāng)為偶數(shù)時,角的終邊在第四象限;當(dāng)為奇數(shù)時,角的終邊在第二象限,故角的終邊在第二或第四象限.【點(diǎn)睛】本題主要考查象限角的集合的應(yīng)用.14、【解析】
由已知得兩式,相減可發(fā)現(xiàn)原數(shù)列的奇數(shù)項和偶數(shù)項均為等差數(shù)列,分類討論分別算出奇數(shù)項的和和偶數(shù)項的和,再相加得原數(shù)列前的和【詳解】兩式相減得數(shù)列的奇數(shù)項,偶數(shù)項分別成等差數(shù)列,,,,數(shù)列的前2n項中所有奇數(shù)項的和為:,數(shù)列的前2n項中所有偶數(shù)項的和為:【點(diǎn)睛】對于遞推式為,其特點(diǎn)是隔項相減為常數(shù),這種數(shù)列要分類討論,分偶數(shù)項和奇數(shù)項來研究,特別注意偶數(shù)項的首項為,而奇數(shù)項的首項為.15、【解析】分析:由二倍角公式求得,再由誘導(dǎo)公式得結(jié)論.詳解:由已知,∴.故答案為.點(diǎn)睛:三角函數(shù)恒等變形中,公式很多,如誘導(dǎo)公式、同角關(guān)系,兩角和與差的正弦(余弦、正切)公式、二倍角公式,先選用哪個公式后選用哪個公式在解題中尤其重要,但其中最重要的是“角”的變換,要分析出已知角與未知角之間的關(guān)系,通過這個關(guān)系都能選用恰當(dāng)?shù)墓剑?6、【解析】
分較長的兩條棱所在直線相交,和較長的兩條棱所在直線異面兩種情況討論,結(jié)合三棱錐的結(jié)構(gòu)特征,即可求出結(jié)果.【詳解】當(dāng)較長的兩條棱所在直線相交時,如圖所示:不妨設(shè),,,所以較長的兩條棱所在直線所成角為,由勾股定理可得:,所以,所以此時較長的兩條棱所在直線所成角的余弦值為;當(dāng)較長的兩條棱所在直線異面時,不妨設(shè),,則,取CD的中點(diǎn)為O,連接OA,OB,所以CD⊥OA,CD⊥OB,而,所以O(shè)A+OB<AB,不能構(gòu)成三角形。所以此情況不存在。故答案為:.【點(diǎn)睛】本題主要考查異面直線所成的角,熟記異面直線所成角的概念,以及三棱錐的結(jié)構(gòu)特征即可,屬于常考題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、或【解析】分析:(1)由與共線,可設(shè),又由為單位向量,根據(jù),列出方程即可求得向量的坐標(biāo);(2)根據(jù)向量的夾角公式,即可求解向量與的夾角.詳解:與共線,又,則,為單位向量,,或,則的坐標(biāo)為或,,.點(diǎn)睛:對于平面向量的運(yùn)算問題,通常用到:1、平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;2、由向量的數(shù)量積的性質(zhì)有,,,因此利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關(guān)的問題;3、本題主要利用向量的模與向量運(yùn)算的靈活轉(zhuǎn)換,應(yīng)用平面向量的夾角公式,建立的方程.18、(1)0或2;(2).【解析】
(1)當(dāng)過坐標(biāo)原點(diǎn)時,可求得滿足題意;當(dāng)不過坐標(biāo)原點(diǎn)時,可根據(jù)直線截距式,利用截距相等構(gòu)造方程求得結(jié)果;(2)當(dāng)時,可得直線不經(jīng)過第二象限;當(dāng)時,結(jié)合函數(shù)圖象可知斜率為正,且在軸截距小于等于零,從而構(gòu)造不等式組求得結(jié)果.【詳解】(1)當(dāng)過坐標(biāo)原點(diǎn)時,,解得:,滿足題意當(dāng)不過坐標(biāo)原點(diǎn)時,即時若,即時,,不符合題意若,即時,方程可整理為:,解得:綜上所述:或(2)當(dāng),即時,,不經(jīng)過第二象限,滿足題意當(dāng),即時,方程可整理為:,解得:綜上所述:的取值范圍為:【點(diǎn)睛】本題考查直線方程的應(yīng)用,涉及到直線截距式方程、由圖象確定參數(shù)范圍等知識;易錯點(diǎn)是在截距相等時,忽略經(jīng)過坐標(biāo)原點(diǎn)的情況,造成丟根.19、(1)(2)【解析】
(1)幾何概型的計算公式求解即可;(2)求出該骰子先后拋擲兩次的基本事件總數(shù),根據(jù)數(shù)量積公式得出滿足包含的基本事件個數(shù),由古典概型概率公式求解即可.【詳解】解:(1)由題意可知,任意向這一區(qū)間內(nèi)擲一點(diǎn),該點(diǎn)落在內(nèi)哪個位置是等可能的.令,則由幾何概型的計算公式可知:.(2)將一枚質(zhì)地均勻的骰子先后拋擲兩次,共有個基本事件.由,得滿足包含的基本事件為,,,,,共6種情形,故.【點(diǎn)睛】本題主要考查了利用幾何概型概率公式以及古典概型概率公式計算概率,屬于中檔題.20、(1);(2).【解析】
(1)根據(jù)不等式的解集,得到和,從而得到等差數(shù)列的公差,得到的通項公式;(2)由(1)得到的的通項,得到的通項,利用等比數(shù)列的求和公式,得到答案.【詳解】(1)因為關(guān)于x的不等式的解集為,所以得到,,所以,,為等差數(shù)列,設(shè)其公差為,所以,所以,所以(2)因為,所以所以是以為首項,為公比的等比數(shù)列,所以.【點(diǎn)睛】本題考查一元二次不等式解集與系數(shù)的關(guān)系,求等差數(shù)列的通項,等比數(shù)列求和,屬于簡單題.21、(1)不是“M函數(shù)”;(2),;(3).【解析】
由不滿足,得不是“M函數(shù)”,可得函數(shù)的周期
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 錄制有聲課件
- 2026年證券從業(yè)資格考試證券市場基礎(chǔ)與投資理財知識題庫
- 2026年新能源技術(shù)與應(yīng)用知識試題
- 2026年消防工程師專業(yè)實務(wù)試題
- 2026年建筑智能化與綠色建筑技術(shù)進(jìn)階考試題
- 全國節(jié)約用水知識競賽題及答案
- 心肺復(fù)蘇并發(fā)癥預(yù)防及處理考試題及答案
- 刑罰知識競賽題庫及答案
- 2026年普法考試練習(xí)題及答案
- 2025年山東服裝職業(yè)學(xué)院單招職業(yè)技能考試題庫帶答案解析
- 埃森哲項目管理
- 心理治療方案在消化系統(tǒng)疾病患者中的應(yīng)用
- 篩分設(shè)備安裝施工詳細(xì)方案
- 2025年低空經(jīng)濟(jì)行業(yè)災(zāi)害應(yīng)急演練與評估報告
- 醫(yī)美院感知識培訓(xùn)課件
- 綠色交通系統(tǒng)1000輛新能源公交車推廣可行性研究報告
- 拜師儀式流程及主持稿
- 廠用電安全知識培訓(xùn)課件
- Unit 1 Travel (同步練習(xí))-【中職英語】高一英語下學(xué)期(高教版2023基礎(chǔ)模塊2)(解析版)
- 微生物進(jìn)出口管理辦法
- 2025至2030中國以太網(wǎng)供電(PoE)電源設(shè)備行業(yè)發(fā)展趨勢分析與未來投資戰(zhàn)略咨詢研究報告
評論
0/150
提交評論