山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第1頁
山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第2頁
山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第3頁
山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第4頁
山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

付費下載

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南市名校2025屆高一下數(shù)學期末統(tǒng)考試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在鈍角三角形ABC中,若B=45°,a=2,則邊長cA.(1,2) B.(0,1)∪(2.函數(shù)在上零點的個數(shù)為()A.2 B.3 C.4 D.53.已知數(shù)列an滿足a1=1,aA.32021-18 B.320204.已知,函數(shù)的最小值是()A.4 B.5 C.8 D.65.若,,,則的最小值為()A. B. C. D.6.已知,若關于的不等式的解集中的整數(shù)恰有3個,則實數(shù)的取值范圍是()A. B. C. D.7.棱柱的側面一定是()A.平行四邊形 B.矩形 C.正方形 D.菱形8.已知半圓C:(),A、B分別為半圓C與x軸的左、右交點,直線m過點B且與x軸垂直,點P在直線m上,縱坐標為t,若在半圓C上存在點Q使,則t的取值范圍是()A. B.C. D.9.下列四個函數(shù)中,與函數(shù)完全相同的是()A. B.C. D.10.在ΔABC中,已知BC=2AC,B∈[πA.[π4C.[π4二、填空題:本大題共6小題,每小題5分,共30分。11.已知函數(shù)分別由下表給出:123211123321則當時,_____________.12.已知,則13.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.14.已知,,,,則________.15.已知正實數(shù)滿足,則的最小值為__________.16.如圖,已知,,任意點關于點的對稱點為,點關于點的對稱點為,則向量_______(用,表示向量)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知α為銳角,且tanα=(I)求tanα+(II)求5sin18.某快餐連鎖店招聘外賣騎手,該快餐連鎖店提供了兩種日工資方案:方案(1)規(guī)定每日底薪50元,快遞業(yè)務每完成一單提成3元;方案(2)規(guī)定每日底薪100元,快遞業(yè)務的前44單沒有提成,從第45單開始,每完成一單提成5元.該快餐連鎖店記錄了每天騎手的人均業(yè)務量.現(xiàn)隨機抽取100天的數(shù)據(jù),將樣本數(shù)據(jù)分為[25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七組,整理得到如圖所示的頻率分布直方圖。(1)隨機選取一天,估計這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于65單的概率;(2)若騎手甲、乙選擇了日工資方案(1),丙、丁選擇了日工資方案(2).現(xiàn)從上述4名騎手中隨機選取2人,求至少有1名騎手選擇方案(1)的概率;19.如圖,在半徑為、圓心角為的扇形的弧上任取一點,作扇形的內(nèi)接矩形,使點在上,點在上,設矩形的面積為,(1)按下列要求寫出函數(shù)的關系式:①設,將表示成的函數(shù)關系式;②設,將表示成的函數(shù)關系式,(2)請你選用(1)中的一個函數(shù)關系式,求出的最大值.20.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,且2asinA=(2b-c)sinB+(2c-b)sinC..(1)求角A的大??;(2)若sinB+sinC=3,試判斷△ABC的形狀.21.如圖,制圖工程師要用兩個同中心的邊長均為4的正方形合成一個八角形圖形,由對稱性,圖中8個三角形都是全等的三角形,設.(1)試用表示的面積;(2)求八角形所覆蓋面積的最大值,并指出此時的大小.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】試題分析:解法一:,由三角形正弦定理誘導公式有,利用三角恒等公式能夠得到,當A為銳角時,0°<A<45°,,即,當A為鈍角時,90°<A<135°,,綜上所述,;解法二:利用圖形,如圖,,,當點A(D)在線段BE上時(不含端點B,E),為鈍角,此時;當點A在線段EF上時,為銳角三角形或直角三角形;當點A在射線FG(不含端點F)上時,為鈍角,此時,所以c的取值范圍為.考點:解三角形.【思路點睛】解三角形需要靈活運用正余弦定理以及三角形的恒等變形,在解答本題時,利用三角形內(nèi)角和,將兩角化作一角,再利用正弦定理即可列出邊長c與角A的關系式,根據(jù)角A的取值范圍即可求出c的范圍,本題亦可利用物理學中力的合成,合力的大小來確定c的大小,正如解法二所述.2、D【解析】

在同一直角坐標系下,分別作出與的圖象,結合函數(shù)圖象即可求解.【詳解】解:由題意知:函數(shù)在上零點個數(shù),等價于與的圖象在同一直角坐標系下交點的個數(shù),作圖如下:由圖可知:函數(shù)在上有個零點.故選:D【點睛】本題考查函數(shù)的零點的知識,考查數(shù)形結合思想,屬于中檔題.3、B【解析】

由題意得出3n+1-12<an+2【詳解】∵an+1-又∵an+2-∵an∈Z,∴于是得到a3上述所有等式全部相加得a2019因此,a2019【點睛】本題考查數(shù)列項的計算,考查累加法的應用,解題的關鍵就是根據(jù)題中條件構造出等式an+24、A【解析】試題分析:由題意可得,滿足運用基本不等式的條件——一正,二定,三相等,所以,故選A考點:利用基本不等式求最值;5、B【解析】

根據(jù)題意,得出,利用基本不等式,即可求解,得到答案.【詳解】由題意,因為,則當且僅當且即時取得最小值.故選B.【點睛】本題主要考查了利用基本不等式求最小值問題,其中解答中合理化簡,熟練應用基本不等式求解是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.6、A【解析】

將不等式化為,可知滿足不等式,不滿足不等式,由此可確定個整數(shù)解為;當和時,解不等式可知不滿足題意;當時,解出不等式的解集,要保證整數(shù)解為,則需,解不等式組求得結果.【詳解】由得:當時,成立必為不等式的一個整數(shù)解當時,不成立不是不等式的整數(shù)解個整數(shù)解分別為:當時,,不滿足題意當時,解不等式得:或不等式不可能只有個整數(shù)解,不滿足題意當時,,解得:,即的取值范圍為:本題正確選項:【點睛】本題考查根據(jù)不等式整數(shù)解的個數(shù)求解參數(shù)范圍問題,關鍵是能夠利用特殊值確定整數(shù)解的具體取值,從而解不等式,根據(jù)整數(shù)解的取值來確定解集的上下限,構造不等式組求得結果.7、A【解析】根據(jù)棱柱的性質可得:其側面一定是平行四邊形,故選A.8、A【解析】

根據(jù)題意,設PQ與x軸交于點T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x軸上方、下方和x軸上三種情況討論,分析|BT|的最值,即可得t的范圍,綜合可得答案.【詳解】根據(jù)題意,設PQ與x軸交于點T,則|PB|=|t|,由于BP與x軸垂直,且∠BPQ,則在Rt△PBT中,|BT||PB||t|,當P在x軸上方時,PT與半圓有公共點Q,PT與半圓相切時,|BT|有最大值3,此時t有最大值,當P在x軸下方時,當Q與A重合時,|BT|有最大值2,|t|有最大值,則t取得最小值,t=0時,P與B重合,不符合題意,則t的取值范圍為[,0)];故選A.【點睛】本題考查直線與圓方程的應用,涉及直線與圓的位置關系,屬于中檔題.9、C【解析】

先判斷函數(shù)的定義域是否相同,再通過化簡判斷對應關系是否相同,從而判斷出與相同的函數(shù).【詳解】的定義域為,A.,因為,所以,定義域為或,與定義域不相同;B.,因為,所以,所以定義域為,與定義域不相同;C.,因為,所以定義域為,又因為,所以與相同;D.,因為,所以,定義域為,與定義域不相同.故選:C.【點睛】本題考查與三角函數(shù)有關的相同函數(shù)的判斷,難度一般.判斷相同函數(shù)時,首先判斷定義域是否相同,定義域相同時再去判斷對應關系是否相同(函數(shù)化簡),結合定義域與對應關系即可判斷出是否是相同函數(shù).10、D【解析】

由BC=2AC,根據(jù)正弦定理可得:sinA=2sinB,由角【詳解】由于在ΔABC中,有BC=2AC,根據(jù)正弦定理可得由于B∈[π6,π4]由于在三角形中,A∈0,π,由正弦函數(shù)的圖像可得:A∈[故答案選D【點睛】本題考查正弦定理在三角形中的應用,以及三角函數(shù)圖像的應用,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、3【解析】

根據(jù)已知,用換元法,從外層求到里層,即可求解.【詳解】令.故答案為:.【點睛】本題考查函數(shù)的表示,考查復合函數(shù)值求參數(shù),換元法是解題的關鍵,屬于基礎題.12、28【解析】試題分析:由等差數(shù)列的前n項和公式,把等價轉化為所以,然后求得a值.考點:極限及其運算13、【解析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【詳解】因為,所以,即;取連續(xù)的有限項構成數(shù)列,不妨令,則,且,則此時必為整數(shù);當時,,不符合;當時,,符合,此時公比;當時,,不符合;當時,,不符合;故:公比.【點睛】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時,經(jīng)常需要進行分類,可先通過列舉的方式找到思路,然后再準確分析.14、【解析】

根據(jù)已知角的范圍分別求出,,利用整體代換即可求解.【詳解】,,,所以,,,,所以,=故答案為:【點睛】此題考查三角函數(shù)給值求值的問題,關鍵在于弄清角的范圍,準確得出三角函數(shù)值,對所求的角進行合理變形,用已知角表示未知角.15、6【解析】

由題得,解不等式即得x+y的最小值.【詳解】由題得,所以,所以,所以x+y≥6或x+y≤-2(舍去),所以x+y的最小值為6.當且僅當x=y=3時取等.故答案為:6【點睛】本題主要考查基本不等式求最值,意在考查學生對該知識的理解掌握水平和分析推理能力.16、【解析】

先求得,然后根據(jù)中位線的性質,求得.【詳解】依題意,由于分別是線段的中點,故.【點睛】本小題主要考查平面向量減法運算,考查三角形中位線,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(I)tanα+π【解析】試題分析:(1)根據(jù)兩角和差的正切公式,將式子展開,根據(jù)題干中的條件代入即可;(2)這是其次式的考查,上下同除以cosα(I)tanα+(II)因為tanα=1518、(1)0.4(2)【解析】

(1)從頻率分布直方圖中計算出前四組矩形面積之和,即為所求概率;(2)列舉出全部的基本事件,并確定出基本事件的總數(shù),然后從中找出事件“至少有名騎手選擇方案(1)”所包含的基本事件數(shù),最后利用古典概型的概率公式可計算出結果?!驹斀狻浚?)設事件為“隨機選取一天,這一天該連鎖店的騎手的人均日快遞業(yè)務量不少于單”依題意,連鎖店的人均日快遞業(yè)務量不少于單的頻率分別為:因為所以估計為;(2)設事件為“從四名騎手中隨機選取2人,至少有1名騎手選擇方案(1)”從四名新聘騎手中隨機選取2名騎手,有6種情況,即{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}其中至少有1名騎手選擇方案()的情況為{甲,乙},{甲,丙},,{甲,丁},{乙,丙},{乙,丁},所以?!军c睛】本題考查頻率分布直方圖以及古典概型概率的計算,在頻率分布直方圖的問題中要注意:(1)每組矩形的面積等于該組數(shù)據(jù)的頻率;(2)所有矩形的面積之和為。19、(Ⅰ),;(Ⅱ).【解析】試題分析:(1)①通過求出矩形的邊長,求出面積的表達式;②利用三角函數(shù)的關系,求出矩形的鄰邊,求出面積的表達式;(2)利用(1)②的表達式,化為一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值.試題解析:(1)①因為,所以,所以,.②當時,,則,又,所以,所以,().(2)由②得,,當時,取得最大值為.考點:1.三角函數(shù)中的恒等變換;2.兩角和與差的正弦函數(shù).【方法點睛】本題主要考查的是函數(shù)解析式的求法,三角函數(shù)的最值的確定,三角函數(shù)公式的靈活運用,計算能力,屬于中檔題,此題是課本題目的延伸,如果(2)選擇(1)①中的解析式,需要用到導數(shù)求解,麻煩,不是命題者的本意,因此正確的選擇是選擇(1)②中的解析式,化成一個角的一個三角函數(shù)的形式,根據(jù)的范圍確定矩形面積的最大值,此類題目選擇正確的解析式是求解容易與否的關鍵.20、(1)60°【解析】

(1)利用余弦定理表示出cosA,然后根據(jù)正弦定理化簡已知的等式,整理后代入表示出的cosA中,化簡后求出cosA的值,由A為三角形的內(nèi)角,利用特殊角的三角函數(shù)值即可求出A的度數(shù);(2)由A為60°,利用三角形的內(nèi)角和定理得到B+C的度數(shù),用B表示出C,代入已知的sinB+sinC=3中,利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化簡,整理后再利用兩角和與差的正弦函數(shù)公式及特殊角的三角函數(shù)值化為一個角的正弦函數(shù),由B的范圍,求出這個角的范圍,利用特殊角的三角函數(shù)值求出B為60°,可得出三角形ABC三個角相等,都為60°,則三角形ABC為等邊三角形.【詳解】(1)由2asinA=(2b-c)sinB+(2c-b)sinC,得2a2=(2b-c)b+(2c-b)c,即bc=b2+c2-a2,∴cosA=b2+c(2)∵A+B+C=180°,∴B+C=180°-60°=120°,由sinB+sinC=3,得sinB+sin(120°-B)=3,∴sinB+sin120°cosB-cos120°sinB=3,∴32sinB+32cosB=3,即sin(∵0°<B<120°,∴30°<B+30°<150°,∴B+30°=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論