2022-2023學(xué)年北京市朝陽區(qū)力邁國際學(xué)校數(shù)學(xué)高三第一學(xué)期期末監(jiān)測模擬試題含解析_第1頁
2022-2023學(xué)年北京市朝陽區(qū)力邁國際學(xué)校數(shù)學(xué)高三第一學(xué)期期末監(jiān)測模擬試題含解析_第2頁
2022-2023學(xué)年北京市朝陽區(qū)力邁國際學(xué)校數(shù)學(xué)高三第一學(xué)期期末監(jiān)測模擬試題含解析_第3頁
2022-2023學(xué)年北京市朝陽區(qū)力邁國際學(xué)校數(shù)學(xué)高三第一學(xué)期期末監(jiān)測模擬試題含解析_第4頁
2022-2023學(xué)年北京市朝陽區(qū)力邁國際學(xué)校數(shù)學(xué)高三第一學(xué)期期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.當(dāng)輸入的實(shí)數(shù)時(shí),執(zhí)行如圖所示的程序框圖,則輸出的不小于103的概率是()A. B. C. D.2.已知三點(diǎn)A(1,0),B(0,),C(2,),則△ABC外接圓的圓心到原點(diǎn)的距離為()A. B.C. D.3.已知函數(shù),若函數(shù)有三個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.4.已知函數(shù),若關(guān)于的不等式恰有1個(gè)整數(shù)解,則實(shí)數(shù)的最大值為()A.2 B.3 C.5 D.85.函數(shù)的大致圖象為()A. B.C. D.6.若雙曲線:繞其對(duì)稱中心旋轉(zhuǎn)后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或7.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米8.關(guān)于函數(shù)在區(qū)間的單調(diào)性,下列敘述正確的是()A.單調(diào)遞增 B.單調(diào)遞減 C.先遞減后遞增 D.先遞增后遞減9.函數(shù)的部分圖象如圖所示,已知,函數(shù)的圖象可由圖象向右平移個(gè)單位長度而得到,則函數(shù)的解析式為()A. B.C. D.10.已知雙曲線的左焦點(diǎn)為,直線經(jīng)過點(diǎn)且與雙曲線的一條漸近線垂直,直線與雙曲線的左支交于不同的兩點(diǎn),,若,則該雙曲線的離心率為().A. B. C. D.11.已知是等差數(shù)列的前項(xiàng)和,若,,則()A.5 B.10 C.15 D.2012.如圖,平面四邊形中,,,,為等邊三角形,現(xiàn)將沿翻折,使點(diǎn)移動(dòng)至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.高三(1)班共有56人,學(xué)號(hào)依次為1,2,3,…,56,現(xiàn)用系統(tǒng)抽樣的辦法抽取一個(gè)容量為4的樣本,已知學(xué)號(hào)為6,34,48的同學(xué)在樣本中,那么還有一個(gè)同學(xué)的學(xué)號(hào)應(yīng)為.14.某地區(qū)連續(xù)5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數(shù)據(jù)的標(biāo)準(zhǔn)差為_______.15.已知拋物線的焦點(diǎn)為,直線與拋物線相切于點(diǎn),是上一點(diǎn)(不與重合),若以線段為直徑的圓恰好經(jīng)過,則點(diǎn)到拋物線頂點(diǎn)的距離的最小值是__________.16.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)函數(shù)(1)證明:;(2)若存在,且,使得成立,求取值范圍.18.(12分)已知橢圓,上、下頂點(diǎn)分別是、,上、下焦點(diǎn)分別是、,焦距為,點(diǎn)在橢圓上.(1)求橢圓的方程;(2)若為橢圓上異于、的動(dòng)點(diǎn),過作與軸平行的直線,直線與交于點(diǎn),直線與直線交于點(diǎn),判斷是否為定值,說明理由.19.(12分)已知函數(shù)在上的最大值為3.(1)求的值及函數(shù)的單調(diào)遞增區(qū)間;(2)若銳角中角所對(duì)的邊分別為,且,求的取值范圍.20.(12分)在平面直角坐標(biāo)系中,已知橢圓的左頂點(diǎn)為,右焦點(diǎn)為,為橢圓上兩點(diǎn),圓.(1)若軸,且滿足直線與圓相切,求圓的方程;(2)若圓的半徑為,點(diǎn)滿足,求直線被圓截得弦長的最大值.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若正數(shù)、滿足,求證:.22.(10分)已知,且.(1)請(qǐng)給出的一組值,使得成立;(2)證明不等式恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

根據(jù)循環(huán)結(jié)構(gòu)的運(yùn)行,直至不滿足條件退出循環(huán)體,求出的范圍,利用幾何概型概率公式,即可求出結(jié)論.【詳解】程序框圖共運(yùn)行3次,輸出的的范圍是,所以輸出的不小于103的概率為.故選:A.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)輸出結(jié)果、幾何概型的概率,模擬程序運(yùn)行是解題的關(guān)鍵,屬于基礎(chǔ)題.2、B【解析】

選B.考點(diǎn):圓心坐標(biāo)3、B【解析】

根據(jù)所給函數(shù)解析式,畫出函數(shù)圖像.結(jié)合圖像,分段討論函數(shù)的零點(diǎn)情況:易知為的一個(gè)零點(diǎn);對(duì)于當(dāng)時(shí),由代入解析式解方程可求得零點(diǎn),結(jié)合即可求得的范圍;對(duì)于當(dāng)時(shí),結(jié)合導(dǎo)函數(shù),結(jié)合導(dǎo)數(shù)的幾何意義即可判斷的范圍.綜合后可得的范圍.【詳解】根據(jù)題意,畫出函數(shù)圖像如下圖所示:函數(shù)的零點(diǎn),即.由圖像可知,,所以是的一個(gè)零點(diǎn),當(dāng)時(shí),,若,則,即,所以,解得;當(dāng)時(shí),,則,且若在時(shí)有一個(gè)零點(diǎn),則,綜上可得,故選:B.【點(diǎn)睛】本題考查了函數(shù)圖像的畫法,函數(shù)零點(diǎn)定義及應(yīng)用,根據(jù)零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,導(dǎo)數(shù)的幾何意義應(yīng)用,屬于中檔題.4、D【解析】

畫出函數(shù)的圖象,利用一元二次不等式解法可得解集,再利用數(shù)形結(jié)合即可得出.【詳解】解:函數(shù),如圖所示當(dāng)時(shí),,由于關(guān)于的不等式恰有1個(gè)整數(shù)解因此其整數(shù)解為3,又∴,,則當(dāng)時(shí),,則不滿足題意;當(dāng)時(shí),當(dāng)時(shí),,沒有整數(shù)解當(dāng)時(shí),,至少有兩個(gè)整數(shù)解綜上,實(shí)數(shù)的最大值為故選:D【點(diǎn)睛】本題主要考查了根據(jù)函數(shù)零點(diǎn)的個(gè)數(shù)求參數(shù)范圍,屬于較難題.5、A【解析】

利用特殊點(diǎn)的坐標(biāo)代入,排除掉C,D;再由判斷A選項(xiàng)正確.【詳解】,排除掉C,D;,,,.故選:A.【點(diǎn)睛】本題考查了由函數(shù)解析式判斷函數(shù)的大致圖象問題,代入特殊點(diǎn),采用排除法求解是解決這類問題的一種常用方法,屬于中檔題.6、C【解析】

由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結(jié)果.【詳解】由雙曲線的幾何性質(zhì)與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點(diǎn)既可在軸,又可在軸上,所以或,或.故選:C【點(diǎn)睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的概念,考查了分類討論的數(shù)學(xué)思想.7、B【解析】

由于實(shí)際問題中扇形弧長較小,可將導(dǎo)線的長視為扇形弧長,利用弧長公式計(jì)算即可.【詳解】因?yàn)榛¢L比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導(dǎo)線長度約為63(厘米).故選:B.【點(diǎn)睛】本題主要考查了扇形弧長的計(jì)算,屬于容易題.8、C【解析】

先用誘導(dǎo)公式得,再根據(jù)函數(shù)圖像平移的方法求解即可.【詳解】函數(shù)的圖象可由向左平移個(gè)單位得到,如圖所示,在上先遞減后遞增.故選:C【點(diǎn)睛】本題考查三角函數(shù)的平移與單調(diào)性的求解.屬于基礎(chǔ)題.9、A【解析】

由圖根據(jù)三角函數(shù)圖像的對(duì)稱性可得,利用周期公式可得,再根據(jù)圖像過,即可求出,再利用三角函數(shù)的平移變換即可求解.【詳解】由圖像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因?yàn)楹瘮?shù)的圖象由圖象向右平移個(gè)單位長度而得到,所以.故選:A【點(diǎn)睛】本題考查了由圖像求三角函數(shù)的解析式、三角函數(shù)圖像的平移伸縮變換,需掌握三角形函數(shù)的平移伸縮變換原則,屬于基礎(chǔ)題.10、A【解析】

直線的方程為,令和雙曲線方程聯(lián)立,再由得到兩交點(diǎn)坐標(biāo)縱坐標(biāo)關(guān)系進(jìn)行求解即可.【詳解】由題意可知直線的方程為,不妨設(shè).則,且將代入雙曲線方程中,得到設(shè)則由,可得,故則,解得則所以雙曲線離心率故選:A【點(diǎn)睛】此題考查雙曲線和直線相交問題,聯(lián)立直線和雙曲線方程得到兩交點(diǎn)坐標(biāo)關(guān)系和已知條件即可求解,屬于一般性題目.11、C【解析】

利用等差通項(xiàng),設(shè)出和,然后,直接求解即可【詳解】令,則,,∴,,∴.【點(diǎn)睛】本題考查等差數(shù)列的求和問題,屬于基礎(chǔ)題12、A【解析】

將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同,由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,在中,計(jì)算半徑即可.【詳解】由,,可知平面.將三棱錐補(bǔ)形為如圖所示的三棱柱,則它們的外接球相同.由此易知外接球球心應(yīng)在棱柱上下底面三角形的外心連線上,記的外心為,由為等邊三角形,可得.又,故在中,,此即為外接球半徑,從而外接球表面積為.故選:A【點(diǎn)睛】本題考查了三棱錐外接球的表面積,考查了學(xué)生空間想象,邏輯推理,綜合分析,數(shù)學(xué)運(yùn)算的能力,屬于較難題.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】

根據(jù)系統(tǒng)抽樣的定義將56人按順序分成4組,每組14人,則1至14號(hào)為第一組,15至28號(hào)為第二組,29號(hào)至42號(hào)為第三組,43號(hào)至56號(hào)為第四組.而學(xué)號(hào)6,34,48分別是第一、三、四組的學(xué)號(hào),所以還有一個(gè)同學(xué)應(yīng)該是15+6-1=20號(hào),故答案為20.14、【解析】

先求出這組數(shù)據(jù)的平均數(shù),再求出這組數(shù)據(jù)的方差,由此能求出該組數(shù)據(jù)的標(biāo)準(zhǔn)差.【詳解】解:某地區(qū)連續(xù)5天的最低氣溫(單位:依次為8,,,0,2,平均數(shù)為:,該組數(shù)據(jù)的方差為:,該組數(shù)據(jù)的標(biāo)準(zhǔn)差為1.故答案為:1.【點(diǎn)睛】本題考查一組數(shù)據(jù)據(jù)的標(biāo)準(zhǔn)差的求法,考查平均數(shù)、方差、標(biāo)準(zhǔn)差的定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15、【解析】

根據(jù)拋物線,不妨設(shè),取,通過求導(dǎo)得,,再根據(jù)以線段為直徑的圓恰好經(jīng)過,則,得到,兩式聯(lián)立,求得點(diǎn)N的軌跡,再求解最值.【詳解】因?yàn)閽佄锞€,不妨設(shè),取,所以,即,所以,因?yàn)橐跃€段為直徑的圓恰好經(jīng)過,所以,所以,所以,由,解得,所以點(diǎn)在直線上,所以當(dāng)時(shí),最小,最小值為.故答案為:2【點(diǎn)睛】本題主要考查直線與拋物線的位置關(guān)系直線的交軌問題,還考查了運(yùn)算求解的能力,屬于中檔題.16、【解析】

利用等差數(shù)列的通項(xiàng)公式以及等比中項(xiàng)的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點(diǎn)睛】本題考查等差數(shù)列通項(xiàng)公式以及等比中項(xiàng)的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)或或【解析】

(1)(2)首先用基本不等式得到,然后解出不等式即可【詳解】(1)因?yàn)樗裕?)當(dāng)時(shí)所以當(dāng)且僅當(dāng)即時(shí)等號(hào)成立因?yàn)榇嬖?,且,使得成立所以所以或解得:或或【點(diǎn)睛】1.要熟練掌握絕對(duì)值的三角不等式,即2.應(yīng)用基本不等式求最值時(shí)要滿足“一正二定三相等”.18、(1);(2),理由見解析.【解析】

(1)求出橢圓的上、下焦點(diǎn)坐標(biāo),利用橢圓的定義求得的值,進(jìn)而可求得的值,由此可得出橢圓的方程;(2)設(shè)點(diǎn)的坐標(biāo)為,求出直線的方程,求出點(diǎn)的坐標(biāo),由此計(jì)算出直線和的斜率,可計(jì)算出的值,進(jìn)而可求得的值,即可得出結(jié)論.【詳解】(1)由題意可知,橢圓的上焦點(diǎn)為、,由橢圓的定義可得,可得,,因此,所求橢圓的方程為;(2)設(shè)點(diǎn)的坐標(biāo)為,則,得,直線的斜率為,所以,直線的方程為,聯(lián)立,解得,即點(diǎn),直線的斜率為,直線的斜率為,所以,,,因此,.【點(diǎn)睛】本題考查橢圓方程的求解,同時(shí)也考查了橢圓中定值問題的求解,考查計(jì)算能力,屬于中等題.19、(1),函數(shù)的單調(diào)遞增區(qū)間為;(2).【解析】

(1)運(yùn)用降冪公式和輔助角公式,把函數(shù)的解析式化為正弦型函數(shù)解析式形式,根據(jù)已知,可以求出的值,再結(jié)合正弦型函數(shù)的性質(zhì)求出函數(shù)的單調(diào)遞增區(qū)間;(2)由(1)結(jié)合已知,可以求出角的值,通過正弦定理把問題的取值范圍轉(zhuǎn)化為兩邊對(duì)角的正弦值的比值的取值范圍,結(jié)合已知是銳角三角形,三角形內(nèi)角和定理,最后求出的取值范圍.【詳解】解:(1)由已知,所以因此令得因此函數(shù)的單調(diào)遞增區(qū)間為(2)由已知,∴由得,因此所以因?yàn)闉殇J角三角形,所以,解得因此,那么【點(diǎn)睛】本題考查了降冪公式、輔助角公式,考查了正弦定理,考查了正弦型三角函數(shù)的單調(diào)性,考查了數(shù)學(xué)運(yùn)算能力.20、(1)(2)【解析】試題分析:(1)確定圓的方程,就是確定半徑的值,因?yàn)橹本€與圓相切,所以先確定直線方程,即確定點(diǎn)坐標(biāo):因?yàn)檩S,所以,根據(jù)對(duì)稱性,可取,則直線的方程為,根據(jù)圓心到切線距離等于半徑得(2)根據(jù)垂徑定理,求直線被圓截得弦長的最大值,就是求圓心到直線的距離的最小值.設(shè)直線的方程為,則圓心到直線的距離,利用得,化簡得,利用直線方程與橢圓方程聯(lián)立方程組并結(jié)合韋達(dá)定理得,因此,當(dāng)時(shí),取最小值,取最大值為.試題解析:解:(1)因?yàn)闄E圓的方程為,所以,.因?yàn)檩S,所以,而直線與圓相切,根據(jù)對(duì)稱性,可取,則直線的方程為,即.由圓與直線相切,得,所以圓的方程為.(2)易知,圓的方程為.①當(dāng)軸時(shí),,所以,此時(shí)得直線被圓截得的弦長為.②當(dāng)與軸不垂直時(shí),設(shè)直線的方程為,,首先由,得,即,所以(*).聯(lián)立,消去,得,將代入(*)式,得.由于圓心到直線的距離為,所以直線被圓截得的弦長為,故當(dāng)時(shí),有最大值為.綜上,因?yàn)?,所以直線被圓截得的弦長的最大值為.考點(diǎn):直線與圓位置關(guān)系21、(1);(2)見解析【解析】

(1)等價(jià)于(Ⅰ)或(Ⅱ)或(Ⅲ),分別解出,再求并集即可;(2)利用基本不等式及可得,代入可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論