版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
上海市浦東新區(qū)高橋中學新高考數(shù)學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.2.如圖,某幾何體的三視圖是由三個邊長為2的正方形和其內(nèi)部的一些虛線構(gòu)成的,則該幾何體的體積為()A. B. C.6 D.與點O的位置有關(guān)3.已知函數(shù)滿足,且,則不等式的解集為()A. B. C. D.4.已知,,分別為內(nèi)角,,的對邊,,,的面積為,則()A. B.4 C.5 D.5.若,,,點C在AB上,且,設,則的值為()A. B. C. D.6.已知點P在橢圓τ:=1(a>b>0)上,點P在第一象限,點P關(guān)于原點O的對稱點為A,點P關(guān)于x軸的對稱點為Q,設,直線AD與橢圓τ的另一個交點為B,若PA⊥PB,則橢圓τ的離心率e=()A. B. C. D.7.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.8.某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多9.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實數(shù)的取值范圍是A. B. C. D.10.在棱長為2的正方體ABCD?A1B1C1D1中,P為A1D1的中點,若三棱錐P?ABC的四個頂點都在球O的球面上,則球O的表面積為()A.12 B. C. D.1011.已知集合,將集合的所有元素從小到大一次排列構(gòu)成一個新數(shù)列,則()A.1194 B.1695 C.311 D.109512.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則14.在平行四邊形中,已知,,,若,,則____________.15.,則f(f(2))的值為____________.16.數(shù)據(jù)的標準差為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖在四邊形中,,,為中點,.(1)求;(2)若,求面積的最大值.18.(12分)如圖,三棱臺的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.19.(12分)在極坐標系中,已知曲線,.(1)求曲線、的直角坐標方程,并判斷兩曲線的形狀;(2)若曲線、交于、兩點,求兩交點間的距離.20.(12分)某工廠,兩條相互獨立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為和.(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.(2)假設不合格的產(chǎn)品均可進行返工修復為合格品,以(1)中確定的作為的值.①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回損失元和元.若從兩條生產(chǎn)線上各隨機抽檢件產(chǎn)品,以挽回損失的平均數(shù)為判斷依據(jù),估計哪條生產(chǎn)線挽回的損失較多?②若最終的合格品(包括返工修復后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機抽取件進行檢測,結(jié)果統(tǒng)計如下圖;用樣本的頻率分布估計總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.21.(12分)已知函數(shù)(,為自然對數(shù)的底數(shù)),.(1)若有兩個零點,求實數(shù)的取值范圍;(2)當時,對任意的恒成立,求實數(shù)的取值范圍.22.(10分)在△ABC中,分別為三個內(nèi)角A、B、C的對邊,且(1)求角A;(2)若且求△ABC的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
作于,于,分析可得,,再根據(jù)正弦的大小關(guān)系判斷分析得,再根據(jù)線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內(nèi)的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據(jù)題意確定角度的正弦的關(guān)系,同時運用線面角的最小性進行判定.屬于中檔題.2、B【解析】
根據(jù)三視圖還原直觀圖如下圖所示,幾何體的體積為正方體的體積減去四棱錐的體積,即可求出結(jié)論.【詳解】如下圖是還原后的幾何體,是由棱長為2的正方體挖去一個四棱錐構(gòu)成的,正方體的體積為8,四棱錐的底面是邊長為2的正方形,頂點O在平面上,高為2,所以四棱錐的體積為,所以該幾何體的體積為.故選:B.【點睛】本題考查三視圖求幾何體的體積,還原幾何體的直觀圖是解題的關(guān)鍵,屬于基礎題.3、B【解析】
構(gòu)造函數(shù),利用導數(shù)研究函數(shù)的單調(diào)性,即可得到結(jié)論.【詳解】設,則函數(shù)的導數(shù),,,即函數(shù)為減函數(shù),,,則不等式等價為,則不等式的解集為,即的解為,,由得或,解得或,故不等式的解集為.故選:.【點睛】本題主要考查利用導數(shù)研究函數(shù)單調(diào)性,根據(jù)函數(shù)的單調(diào)性解不等式,考查學生分析問題解決問題的能力,是難題.4、D【解析】
由正弦定理可知,從而可求出.通過可求出,結(jié)合余弦定理即可求出的值.【詳解】解:,即,即.,則.,解得.,故選:D.【點睛】本題考查了正弦定理,考查了余弦定理,考查了三角形的面積公式,考查同角三角函數(shù)的基本關(guān)系.本題的關(guān)鍵是通過正弦定理結(jié)合已知條件,得到角的正弦值余弦值.5、B【解析】
利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.6、C【解析】
設,則,,,設,根據(jù)化簡得到,得到答案.【詳解】設,則,,,則,設,則,兩式相減得到:,,,即,,,故,即,故,故.故選:.【點睛】本題考查了橢圓的離心率,意在考查學生的計算能力和轉(zhuǎn)化能力.7、C【解析】
判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉(zhuǎn)化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.8、D【解析】
根據(jù)兩個圖形的數(shù)據(jù)進行觀察比較,即可判斷各選項的真假.【詳解】在A中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運營崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點睛】本題主要考查了命題的真假判定,以及統(tǒng)計圖表中餅狀圖和條形圖的性質(zhì)等基礎知識的應用,著重考查了推理與運算能力,屬于基礎題.9、D【解析】
由題意得,表示不等式的解集中整數(shù)解之和為6.當時,數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個,解集中的整數(shù)解之和一定大于6.當時,,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個整數(shù)解,為1,2,3,滿足,所以符合題意.當時,作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當時,實數(shù)的取值范圍是.故選D.10、C【解析】
取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,此直三棱柱和三棱錐P?ABC有相同的外接球,求出等腰三角形的外接圓半徑,然后利用勾股定理可求出外接球的半徑【詳解】如圖,取B1C1的中點Q,連接PQ,BQ,CQ,PD,則三棱柱BCQ?ADP為直三棱柱,所以該直三棱柱的六個頂點都在球O的球面上,的外接圓直徑為,球O的半徑R滿足,所以球O的表面積S=4πR2=,故選:C.【點睛】此題考查三棱錐的外接球半徑與棱長的關(guān)系,及球的表面積公式,解題時要注意審題,注意空間思維能力的培養(yǎng),屬于中檔題.11、D【解析】
確定中前35項里兩個數(shù)列中的項數(shù),數(shù)列中第35項為70,這時可通過比較確定中有多少項可以插入這35項里面即可得,然后可求和.【詳解】時,,所以數(shù)列的前35項和中,有三項3,9,27,有32項,所以.故選:D.【點睛】本題考查數(shù)列分組求和,掌握等差數(shù)列和等比數(shù)列前項和公式是解題基礎.解題關(guān)鍵是確定數(shù)列的前35項中有多少項是中的,又有多少項是中的.12、D【解析】
依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【點睛】本題考查利用導數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、-5【解析】
畫出x,y滿足的可行域,當目標函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當目標函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準確無誤地作出可行域;二,畫目標函數(shù)所對應的直線時,要注意讓其斜率與約束條件中的直線的斜率進行比較,避免出錯;三,一般情況下,目標函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。14、【解析】
設,則,得到,,利用向量的數(shù)量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數(shù)量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數(shù)量積的運算公式,準確運算是解答的關(guān)鍵,著重考查了推理與運算能力,屬于中檔試題.15、1【解析】
先求f(1),再根據(jù)f(1)值所在區(qū)間求f(f(1)).【詳解】由題意,f(1)=log3(11–1)=1,故f(f(1))=f(1)=1×e1–1=1,故答案為:1.【點睛】本題考查分段函數(shù)求值,考查對應性以及基本求解能力.16、【解析】
先計算平均數(shù)再求解方差與標準差即可.【詳解】解:樣本的平均數(shù),這組數(shù)據(jù)的方差是標準差,故答案為:【點睛】本題主要考查了標準差的計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)1;(2)【解析】
(1),在和中分別運用余弦定理可表示出,運用算兩次的思想即可求得,進而求出;(2)在中,根據(jù)余弦定理和基本不等式,可求得,再由三角形的面積公式以及正弦函數(shù)的有界性,求出的面積的最大值.【詳解】(1)由題設,則在和中由余弦定理得:,即解得,∴(2)在中由余弦定理得,即,∴所以面積的最大值為,此時.【點睛】本題主要考查余弦定理在解三角形中的應用,以及三角形面積公式的應用,意在考查學生的數(shù)學運算能力,屬于中檔題.18、(Ⅰ)見證明;(Ⅱ)【解析】
(Ⅰ)取的中點為,連結(jié),易證四邊形為平行四邊形,即,由于,為的中點,可得到,從而得到,即可證明平面,從而得到;(Ⅱ)易證,,兩兩垂直,以,,分別為,,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量為,設與平面所成角為,則,即可得到答案.【詳解】解:(Ⅰ)取的中點為,連結(jié).由是三棱臺得,平面平面,從而.∵,∴,∴四邊形為平行四邊形,∴.∵,為的中點,∴,∴.∵平面平面,且交線為,平面,∴平面,而平面,∴.(Ⅱ)連結(jié).由是正三角形,且為中點,則.由(Ⅰ)知,平面,,∴,,∴,,兩兩垂直.以,,分別為,,軸,建立如圖所示的空間直角坐標系.設,則,,,,∴,,.設平面的一個法向量為.由可得,.令,則,,∴.設與平面所成角為,則.【點睛】本題考查了空間幾何中,面面垂直的性質(zhì),線線垂直的證明,及線面角的求法,考查了學生的邏輯推理能力與計算求解能力,屬于中檔題.19、(1)表示一條直線,是圓心為,半徑為的圓;(2).【解析】
(1)直接利用極坐標方程與直角坐標方程之間的轉(zhuǎn)換關(guān)系可將曲線的方程化為直角坐標方程,進而可判斷出曲線的形狀,在曲線的方程兩邊同時乘以得,由可將曲線的方程化為直角坐標方程,由此可判斷出曲線的形狀;(2)由直線過圓的圓心,可得出為圓的一條直徑,進而可得出.【詳解】(1),則曲線的普通方程為,曲線表示一條直線;由,得,則曲線的直角坐標方程為,即.所以,曲線是圓心為,半徑為的圓;(2)由(1)知,點在直線上,直線過圓的圓心.因此,是圓的直徑,.【點睛】本題考查曲線的極坐標方程與直角坐標方程之間的轉(zhuǎn)化,同時也考查了直線截圓所得弦長的計算,考查計算能力,屬于基礎題.20、(1)(2)①生產(chǎn)線上挽回的損失較多.②見解析【解析】
(1)由題意得到關(guān)于的不等式,求解不等式得到的取值范圍即可確定其最小值;(2)①.由題意利用二項分布的期望公式和數(shù)學期望的性質(zhì)給出結(jié)論即可;②.由題意首先確定X可能的取值,然后求得相應的概率值可得分布列,最后由分布列可得利潤的期望值.【詳解】(1)設從,生產(chǎn)線上各抽檢一件產(chǎn)品,至少有一件合格為事件,設從,生產(chǎn)線上抽到合格品分別為事件,,則,互為獨立事件由已知有,則解得,則的最小值(2)由(1)知,生產(chǎn)線的合
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 奧體莊園施工方案(3篇)
- 三八活動chahua策劃方案(3篇)
- 2026年1月江蘇揚州市衛(wèi)生健康系統(tǒng)事業(yè)單位招聘專業(yè)技術(shù)人員54人考試參考題庫及答案解析
- 2026西藏那曲班戈縣消防救援大隊面向社會招錄政府專職消防員2人筆試參考題庫及答案解析
- 2026北京中鋁資本控股有限公司校園招聘2人筆試參考題庫及答案解析
- 2026河南漯河市中醫(yī)院招聘勞務派遣人員2人筆試參考題庫及答案解析
- 2026湖北恩施州宣恩縣園投人力資源服務有限公司招聘宣恩貢水融資擔保有限公司人員1人備考考試試題及答案解析
- 2026北京一輕控股有限責任公司內(nèi)部招聘1人備考考試試題及答案解析
- 國際護理學發(fā)展與比較課件
- 高熱驚厥護理的研究進展與展望
- 公司酶制劑發(fā)酵工工藝技術(shù)規(guī)程
- 2025省供銷社招聘試題與答案
- 單位內(nèi)部化妝培訓大綱
- 河堤植草護坡施工方案
- 高校行政管理流程及案例分析
- 高效節(jié)水灌溉方式課件
- 基坑安全工程題庫及答案解析
- 《人間充質(zhì)基質(zhì)細胞來源細胞外囊泡凍干粉質(zhì)量要求》(征求意見稿)
- 2025年海南省中級經(jīng)濟師考試(工商管理專業(yè)知識和實務)能力提高訓練試題庫及答案
- 鄉(xiāng)鎮(zhèn)村監(jiān)會培訓課件
- 入團申請書教學課件
評論
0/150
提交評論