河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷含解析_第1頁(yè)
河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷含解析_第2頁(yè)
河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷含解析_第3頁(yè)
河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷含解析_第4頁(yè)
河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩24頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

河北省唐山市玉田縣重點(diǎn)名校2024年中考數(shù)學(xué)模試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標(biāo)系,并且“過(guò)道也占一個(gè)位置”,例如小王所對(duì)應(yīng)的坐標(biāo)為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對(duì)應(yīng)的坐標(biāo)是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)2.下列圖標(biāo)中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C. D.3.如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長(zhǎng)度為何?()A.1 B.2 C.2﹣2 D.4﹣24.如圖1,E為矩形ABCD邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q從點(diǎn)B沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,它們運(yùn)動(dòng)的速度都是1cm/s.若P,Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯(cuò)誤的是()A.AE=6cm B.C.當(dāng)0<t≤10時(shí), D.當(dāng)t=12s時(shí),△PBQ是等腰三角形5.老師隨機(jī)抽查了學(xué)生讀課外書冊(cè)數(shù)的情況,繪制成條形圖和不完整的扇形圖,其中條形圖被墨跡遮蓋了一部分,則條形圖中被遮蓋的數(shù)是()A.5 B.9 C.15 D.226.若一個(gè)函數(shù)的圖象是經(jīng)過(guò)原點(diǎn)的直線,并且這條直線過(guò)點(diǎn)(-3,2a)和點(diǎn)(8a,-3),則a的值為()A.916 B.34 C.±7.甲、乙兩名同學(xué)在一次用頻率去估計(jì)概率的實(shí)驗(yàn)中,統(tǒng)計(jì)了某一結(jié)果出現(xiàn)的頻率繪出的統(tǒng)計(jì)圖如圖,則符合這一結(jié)果的實(shí)驗(yàn)可能是()A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率B.拋一枚硬幣,出現(xiàn)正面的概率C.從一個(gè)裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率D.任意寫一個(gè)整數(shù),它能被2整除的概率8.甲骨文是我國(guó)的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對(duì)稱的是()A. B. C. D.9.如圖,l1、l2、l3兩兩相交于A、B、C三點(diǎn),它們與y軸正半軸分別交于點(diǎn)D、E、F,若A、B、C三點(diǎn)的橫坐標(biāo)分別為1、2、3,且OD=DE=1,則下列結(jié)論正確的個(gè)數(shù)是()①,②S△ABC=1,③OF=5,④點(diǎn)B的坐標(biāo)為(2,2.5)A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)10.如圖,A、B、C、D四個(gè)點(diǎn)均在⊙O上,∠AOD=70°,AO∥DC,則∠B的度數(shù)為()A.40° B.45° C.50° D.55°11.△ABC的三條邊長(zhǎng)分別是5,13,12,則其外接圓半徑和內(nèi)切圓半徑分別是()A.13,5 B.6.5,3 C.5,2 D.6.5,212.在下列四個(gè)圖案中既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是()A. B. C.. D.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.不等式組的解集是_____________.14.計(jì)算:|﹣3|+(﹣1)2=.15.如圖,圓錐底面圓心為O,半徑OA=1,頂點(diǎn)為P,將圓錐置于平面上,若保持頂點(diǎn)P位置不變,將圓錐順時(shí)針滾動(dòng)三周后點(diǎn)A恰好回到原處,則圓錐的高OP=_____.16.因式分解:a3-a=______.17.若圓錐的母線長(zhǎng)為4cm,其側(cè)面積,則圓錐底面半徑為cm.18.正六邊形的每個(gè)內(nèi)角等于______________°.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)(1)問(wèn)題發(fā)現(xiàn)如圖1,在Rt△ABC中,∠A=90°,=1,點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD.(1)①求的值;②求∠ACD的度數(shù).(2)拓展探究如圖2,在Rt△ABC中,∠A=90°,=k.點(diǎn)P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=90°,∠APD=∠B,連接CD,請(qǐng)判斷∠ACD與∠B的數(shù)量關(guān)系以及PB與CD之間的數(shù)量關(guān)系,并說(shuō)明理由.(3)解決問(wèn)題如圖3,在△ABC中,∠B=45°,AB=4,BC=12,P是邊BC上一動(dòng)點(diǎn)(不與點(diǎn)B重合),∠PAD=∠BAC,∠APD=∠B,連接CD.若PA=5,請(qǐng)直接寫出CD的長(zhǎng).20.(6分)已知:如圖,AB為⊙O的直徑,C是BA延長(zhǎng)線上一點(diǎn),CP切⊙O于P,弦PD⊥AB于E,過(guò)點(diǎn)B作BQ⊥CP于Q,交⊙O于H,(1)如圖1,求證:PQ=PE;(2)如圖2,G是圓上一點(diǎn),∠GAB=30°,連接AG交PD于F,連接BF,若tan∠BFE=3,求∠C的度數(shù);(3)如圖3,在(2)的條件下,PD=6,連接QC交BC于點(diǎn)M,求QM的長(zhǎng).21.(6分)某中學(xué)為開拓學(xué)生視野,開展“課外讀書周”活動(dòng),活動(dòng)后期隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外閱讀時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:(1)本次調(diào)查的學(xué)生總數(shù)為_____人,被調(diào)查學(xué)生的課外閱讀時(shí)間的中位數(shù)是_____小時(shí),眾數(shù)是_____小時(shí);并補(bǔ)全條形統(tǒng)計(jì)圖;(2)在扇形統(tǒng)計(jì)圖中,課外閱讀時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是_____;(3)若全校九年級(jí)共有學(xué)生800人,估計(jì)九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生有多少人?22.(8分)已知拋物線y=ax2+c(a≠0).(1)若拋物線與x軸交于點(diǎn)B(4,0),且過(guò)點(diǎn)P(1,–3),求該拋物線的解析式;(2)若a>0,c=0,OA、OB是過(guò)拋物線頂點(diǎn)的兩條互相垂直的直線,與拋物線分別交于A、B兩點(diǎn),求證:直線AB恒經(jīng)過(guò)定點(diǎn)(0,);(3)若a>0,c<0,拋物線與x軸交于A,B兩點(diǎn)(A在B左邊),頂點(diǎn)為C,點(diǎn)P在拋物線上且位于第四象限.直線PA、PB與y軸分別交于M、N兩點(diǎn).當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),是否為定值?若是,試求出該定值;若不是,請(qǐng)說(shuō)明理由.23.(8分)如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c經(jīng)過(guò)A、B、C三點(diǎn),已知點(diǎn)A(﹣3,0),B(0,3),C(1,0).(1)求此拋物線的解析式.(2)點(diǎn)P是直線AB上方的拋物線上一動(dòng)點(diǎn),(不與點(diǎn)A、B重合),過(guò)點(diǎn)P作x軸的垂線,垂足為F,交直線AB于點(diǎn)E,作PD⊥AB于點(diǎn)D.動(dòng)點(diǎn)P在什么位置時(shí),△PDE的周長(zhǎng)最大,求出此時(shí)P點(diǎn)的坐標(biāo).24.(10分)如圖,四邊形ABCD中,E點(diǎn)在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求證:△ABC與△DEC全等.25.(10分)如圖所示,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象交于A(2,4),B(﹣4,n)兩點(diǎn).分別求出一次函數(shù)與反比例函數(shù)的表達(dá)式;過(guò)點(diǎn)B作BC⊥x軸,垂足為點(diǎn)C,連接AC,求△ACB的面積.26.(12分)化簡(jiǎn)分式,并從0、1、2、3這四個(gè)數(shù)中取一個(gè)合適的數(shù)作為x的值代入求值.27.(12分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點(diǎn)E,交BC于點(diǎn)D,P為AC延長(zhǎng)線上一點(diǎn),且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長(zhǎng).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、C【解析】

根據(jù)題意知小李所對(duì)應(yīng)的坐標(biāo)是(7,4).故選C.2、D【解析】試題分析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的概念,可知:A既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故不正確;B不是軸對(duì)稱圖形,但是中心對(duì)稱圖形,故不正確;C是軸對(duì)稱圖形,但不是中心對(duì)稱圖形,故不正確;D即是軸對(duì)稱圖形,也是中心對(duì)稱圖形,故正確.故選D.考點(diǎn):軸對(duì)稱圖形和中心對(duì)稱圖形識(shí)別3、C【解析】

先判斷出PQ⊥CF,再求出AC=2,AF=2,CF=2AF=4,利用△ACF的面積的兩種算法即可求出PG,然后計(jì)算出PQ即可.【詳解】解:如圖,連接PF,QF,PC,QC∵P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心,∴PF是∠AFC的角平分線,F(xiàn)Q是∠CFE的角平分線,∴∠PFC=∠AFC=30°,∠QFC=∠CFE=30°,∴∠PFC=∠QFC=30°,同理,∠PCF=∠QCF∴PQ⊥CF,∴△PQF是等邊三角形,∴PQ=2PG;易得△ACF≌△ECF,且內(nèi)角是30o,60o,90o的三角形,∴AC=2,AF=2,CF=2AF=4,∴S△ACF=AF×AC=×2×2=2,過(guò)點(diǎn)P作PM⊥AF,PN⊥AC,PQ交CF于G,∵點(diǎn)P是△ACF的內(nèi)心,∴PM=PN=PG,∴S△ACF=S△PAF+S△PAC+S△PCF=AF×PM+AC×PN+CF×PG=×2×PG+×2×PG+×4×PG=(1++2)PG=(3+)PG=2,∴PG==,∴PQ=2PG=2()=2-2.故選C.【點(diǎn)睛】本題是三角形的內(nèi)切圓與內(nèi)心,主要考查了三角形的內(nèi)心的特點(diǎn),三角形的全等,解本題的關(guān)鍵是知道三角形的內(nèi)心的意義.4、D【解析】(1)結(jié)論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結(jié)論B正確,理由如下:如圖,連接EC,過(guò)點(diǎn)E作EF⊥BC于點(diǎn)F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結(jié)論C正確,理由如下:如圖,過(guò)點(diǎn)P作PG⊥BQ于點(diǎn)G,∵BQ=BP=t,∴.(4)結(jié)論D錯(cuò)誤,理由如下:當(dāng)t=12s時(shí),點(diǎn)Q與點(diǎn)C重合,點(diǎn)P運(yùn)動(dòng)到ED的中點(diǎn),設(shè)為N,如圖,連接NB,NC.此時(shí)AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時(shí)△PBQ不是等腰三角形.故選D.5、B【解析】

條形統(tǒng)計(jì)圖是用線段長(zhǎng)度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長(zhǎng)短不同的矩形直條,然后按順序把這些直條排列起來(lái).扇形統(tǒng)計(jì)圖是用整個(gè)圓表示總數(shù)用圓內(nèi)各個(gè)扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù).通過(guò)扇形統(tǒng)計(jì)圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.用整個(gè)圓的面積表示總數(shù)(單位1),用圓的扇形面積表示各部分占總數(shù)的百分?jǐn)?shù).【詳解】課外書總?cè)藬?shù):6÷25%=24(人),看5冊(cè)的人數(shù):24﹣5﹣6﹣4=9(人),故選B.【點(diǎn)睛】本題考查了統(tǒng)計(jì)圖與概率,熟練掌握條形統(tǒng)計(jì)圖與扇形統(tǒng)計(jì)圖是解題的關(guān)鍵.6、D【解析】

根據(jù)一次函數(shù)的圖象過(guò)原點(diǎn)得出一次函數(shù)式正比例函數(shù),設(shè)一次函數(shù)的解析式為y=kx,把點(diǎn)(?3,2a)與點(diǎn)(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設(shè)一次函數(shù)的解析式為:y=kx,把點(diǎn)(?3,2a)與點(diǎn)(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點(diǎn)睛】本題考查了用待定系數(shù)法求一次函數(shù)的解析式,主要考查學(xué)生運(yùn)用性質(zhì)進(jìn)行計(jì)算的能力.7、C【解析】解:A.?dāng)S一枚正六面體的骰子,出現(xiàn)1點(diǎn)的概率為,故此選項(xiàng)錯(cuò)誤;B.?dāng)S一枚硬幣,出現(xiàn)正面朝上的概率為,故此選項(xiàng)錯(cuò)誤;C.從一裝有2個(gè)白球和1個(gè)紅球的袋子中任取一球,取到紅球的概率是:≈0.33;故此選項(xiàng)正確;D.任意寫出一個(gè)整數(shù),能被2整除的概率為,故此選項(xiàng)錯(cuò)誤.故選C.8、D【解析】試題分析:A.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;B.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;C.是軸對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;D.不是軸對(duì)稱圖形,故本選項(xiàng)正確.故選D.考點(diǎn):軸對(duì)稱圖形.9、C【解析】

①如圖,由平行線等分線段定理(或分線段成比例定理)易得:;②設(shè)過(guò)點(diǎn)B且與y軸平行的直線交AC于點(diǎn)G,則S△ABC=S△AGB+S△BCG,易得:S△AED=,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=,又易得G為AC中點(diǎn),所以,S△AGB=S△BGC=,從而得結(jié)論;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得結(jié)論;④易知,點(diǎn)B的位置會(huì)隨著點(diǎn)A在直線x=1上的位置變化而相應(yīng)的發(fā)生變化,所以④錯(cuò)誤.【詳解】解:①如圖,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴,故①正確;②設(shè)過(guò)點(diǎn)B且與y軸平行的直線交AC于點(diǎn)G(如圖),則S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=×1×1=,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=,同理得:G為AC中點(diǎn),∴S△ABG=S△BCG=,∴S△ABC=1,故②正確;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴,∴EF=1.即OF=5,故③正確;④易知,點(diǎn)B的位置會(huì)隨著點(diǎn)A在直線x=1上的位置變化而相應(yīng)的發(fā)生變化,故④錯(cuò)誤;故選C.【點(diǎn)睛】本題考查了圖形與坐標(biāo)的性質(zhì)、三角形的面積求法、相似三角形的性質(zhì)和判定、平行線等分線段定理、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.考查學(xué)生數(shù)形結(jié)合的數(shù)學(xué)思想方法.10、D【解析】試題分析:如圖,連接OC,∵AO∥DC,∴∠ODC=∠AOD=70°,∵OD=OC,∴∠ODC=∠OCD=70°,∴∠COD=40°,∴∠AOC=110°,∴∠B=∠AOC=55°.故選D.考點(diǎn):1、平行線的性質(zhì);2、圓周角定理;3等腰三角形的性質(zhì)11、D【解析】

根據(jù)邊長(zhǎng)確定三角形為直角三角形,斜邊即為外切圓直徑,內(nèi)切圓半徑為,【詳解】解:如下圖,∵△ABC的三條邊長(zhǎng)分別是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜邊為外切圓直徑,∴外切圓半徑==6.5,內(nèi)切圓半徑==2,故選D.【點(diǎn)睛】本題考查了直角三角形內(nèi)切圓和外切圓的半徑,屬于簡(jiǎn)單題,熟悉概念是解題關(guān)鍵.12、B【解析】試題分析:根據(jù)軸對(duì)稱圖形和中心對(duì)稱圖形的定義:如果一個(gè)平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個(gè)圖形就叫做軸對(duì)稱圖形;中心對(duì)稱圖形的定義:把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來(lái)的圖形重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)就是它的對(duì)稱中心,因此:A、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,不符合題意;B、是軸對(duì)稱圖形,也是中心對(duì)稱圖形,符合題意;C、不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,不符合題意;D、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,不符合題意.故選B.考點(diǎn):軸對(duì)稱圖形和中心對(duì)稱圖形二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、x<-1【解析】解不等式①得:x<5,解不等式②得:x<-1所以不等式組的解集是x<-1.故答案是:x<-1.14、4.【解析】

|﹣3|+(﹣1)2=4,故答案為4.15、2【解析】

先利用圓的周長(zhǎng)公式計(jì)算出PA的長(zhǎng),然后利用勾股定理計(jì)算PO的長(zhǎng).【詳解】解:根據(jù)題意得2π×PA=3×2π×1,所以PA=3,所以圓錐的高OP=PA故答案為22【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).16、a(a-1)(a+1)【解析】分析:先提取公因式a,再對(duì)余下的多項(xiàng)式利用平方差公式繼續(xù)分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).17、3【解析】∵圓錐的母線長(zhǎng)是5cm,側(cè)面積是15πcm2,∴圓錐的側(cè)面展開扇形的弧長(zhǎng)為:l==6π,∵錐的側(cè)面展開扇形的弧長(zhǎng)等于圓錐的底面周長(zhǎng),∴r==3cm,18、120【解析】試題解析:六邊形的內(nèi)角和為:(6-2)×180°=720°,∴正六邊形的每個(gè)內(nèi)角為:=120°.考點(diǎn):多邊形的內(nèi)角與外角.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)1,45°;(2)∠ACD=∠B,=k;(3).【解析】

(1)根據(jù)已知條件推出△ABP≌△ACD,根據(jù)全等三角形的性質(zhì)得到PB=CD,∠ACD=∠B=45°,于是得到根據(jù)已知條件得到△ABC∽△APD,由相似三角形的性質(zhì)得到,得到ABP∽△CAD,根據(jù)相似三角形的性質(zhì)得到結(jié)論;過(guò)A作AH⊥BC于H,得到△ABH是等腰直角三角形,求得AH=BH=4,根據(jù)勾股定理得到根據(jù)相似三角形的性質(zhì)得到,推出△ABP∽△CAD,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)∵∠A=90°,∴AB=AC,∴∠B=45°,∵∠PAD=90°,∠APD=∠B=45°,∴AP=AD,∴∠BAP=∠CAD,在△ABP與△ACD中,AB=AC,∠BAP=∠CAD,AP=AD,∴△ABP≌△ACD,∴PB=CD,∠ACD=∠B=45°,∴=1,(2)∵∠BAC=∠PAD=90°,∠B=∠APD,∴△ABC∽△APD,∵∠BAP+∠PAC=∠PAC+∠CAD=90°,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴∠ACD=∠B,(3)過(guò)A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=1,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴過(guò)A作AH⊥BC于H,∵∠B=45°,∴△ABH是等腰直角三角形,∵∴AH=BH=4,∵BC=12,∴CH=8,∴∴PH==3,∴PB=7,∵∠BAC=∠PAD=,∠B=∠APD,∴△ABC∽△APD,∴,∵∠BAP+∠PAC=∠PAC+∠CAD,∴∠BAP=∠CAD,∴△ABP∽△CAD,∴即∴【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì),全等三角形的判定和性質(zhì),相似三角形的判定和性質(zhì),勾股定理,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.20、(1)證明見解析(2)30°(3)QM=【解析】試題分析:(1)連接OP,PB,由已知易證∠OBP=∠OPB=∠QBP,從而可得BP平分∠OBQ,結(jié)合BQ⊥CP于點(diǎn)Q,PE⊥AB于點(diǎn)E即可由角平分線的性質(zhì)得到PQ=PE;(2)如下圖2,連接OP,則由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,設(shè)EF=x,則由∠GAB=30°,∠AEF=90°可得AE=,在Rt△BEF中,由tan∠BFE=可得BE=,從而可得AB=,則OP=OA=,結(jié)合AE=可得OE=,這樣即可得到sin∠OPE=,由此可得∠OPE=30°,則∠C=30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作OK⊥HB于點(diǎn)K,結(jié)合BQ⊥CP,∠OPQ=90°,可得四邊形POKQ為矩形.由此可得QK=PO,OK∥CQ從而可得∠KOB=∠C=30°;由已知易證PE=,在Rt△EPO中結(jié)合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG中由已知條件可得BG=6,∠ABG=60°;過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,從而可得解得GN=,BN=3,由此可得QN=12,則在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分線,由此可得QM:GM=QB:GB=9:6由此即可求得QM的長(zhǎng)了.試題解析:(1)如下圖1,連接OP,PB,∵CP切⊙O于P,∴OP⊥CP于點(diǎn)P,又∵BQ⊥CP于點(diǎn)Q,∴OP∥BQ,∴∠OPB=∠QBP,∵OP=OB,∴∠OPB=∠OBP,∴∠QBP=∠OBP,又∵PE⊥AB于點(diǎn)E,∴PQ=PE;(2)如下圖2,連接,∵CP切⊙O于P,∴∴∵PD⊥AB∴∴∴在Rt中,∠GAB=30°∴設(shè)EF=x,則在Rt中,tan∠BFE=3∴∴∴∴∴在RtPEO中,∴30°;(3)如下圖3,連接BG,過(guò)點(diǎn)O作于K,又BQ⊥CP,∴,∴四邊形POKQ為矩形,∴QK=PO,OK//CQ,∴30°,∵⊙O中PD⊥AB于E,PD=6,AB為⊙O的直徑,∴PE=PD=3,根據(jù)(2)得,在RtEPO中,,∴,∴OB=QK=PO=6,∴在Rt中,,∴,∴QB=9,在△ABG中,AB為⊙O的直徑,∴AGB=90°,∵BAG=30°,∴BG=6,ABG=60°,過(guò)點(diǎn)G作GN⊥QB交QB的延長(zhǎng)線于點(diǎn)N,則∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos∠GBQ=3,GN=BQ·sin∠GBQ=,∴QN=QB+BN=12,∴在Rt△QGN中,QG=,∵∠ABG=∠CBQ=60°,∴BM是△BQG的角平分線,∴QM:GM=QB:GB=9:6,∴QM=.點(diǎn)睛:解本題第3小題的要點(diǎn)是:(1)作出如圖所示的輔助線,結(jié)合已知條件和(2)先求得BQ、BG的長(zhǎng)及∠CBQ=∠ABG=60°;(2)再過(guò)點(diǎn)G作GN⊥QB并交QB的延長(zhǎng)線于點(diǎn)N,解出BN和GN的長(zhǎng),這樣即可在Rt△QGN中求得QG的長(zhǎng),最后在△BQG中“由角平分線分線段成比例定理”即可列出比例式求得QM的長(zhǎng)了.21、(1)50;4;5;畫圖見解析;(2)144°;(3)64【解析】

(1)根據(jù)統(tǒng)計(jì)圖可知,課外閱讀達(dá)3小時(shí)的共10人,占總?cè)藬?shù)的20%,由此可得出總?cè)藬?shù);求出課外閱讀時(shí)間4小時(shí)與6小時(shí)男生的人數(shù),再根據(jù)中位數(shù)與眾數(shù)的定義即可得出結(jié)論;根據(jù)求出的人數(shù)補(bǔ)全條形統(tǒng)計(jì)圖即可;

(2)求出課外閱讀時(shí)間為5小時(shí)的人數(shù),再求出其人數(shù)與總?cè)藬?shù)的比值即可得出扇形的圓心角度數(shù);

(3)求出總?cè)藬?shù)與課外閱讀時(shí)間為6小時(shí)的學(xué)生人數(shù)的百分比的積即可.【詳解】解:(1)∵課外閱讀達(dá)3小時(shí)的共10人,占總?cè)藬?shù)的20%,∴=50(人).∵課外閱讀4小時(shí)的人數(shù)是32%,∴50×32%=16(人),∴男生人數(shù)=16﹣8=8(人);∴課外閱讀6小時(shí)的人數(shù)=50﹣6﹣4﹣8﹣8﹣8﹣12﹣3=1(人),∴課外閱讀3小時(shí)的是10人,4小時(shí)的是16人,5小時(shí)的是20人,6小時(shí)的是4人,∴中位數(shù)是4小時(shí),眾數(shù)是5小時(shí).補(bǔ)全圖形如圖所示.故答案為50,4,5;(2)∵課外閱讀5小時(shí)的人數(shù)是20人,∴×360°=144°.故答案為144°;(3)∵課外閱讀6小時(shí)的人數(shù)是4人,∴800×=64(人).答:九年級(jí)一周課外閱讀時(shí)間為6小時(shí)的學(xué)生大約有64人.【點(diǎn)睛】本題考查了統(tǒng)計(jì)圖與中位數(shù)、眾數(shù)的知識(shí)點(diǎn),解題的關(guān)鍵是熟練的掌握中位數(shù)與眾數(shù)的定義與根據(jù)題意作圖.22、(1);(2)詳見解析;(3)為定值,=【解析】

(1)把點(diǎn)B(4,0),點(diǎn)P(1,–3)代入y=ax2+c(a≠0),用待定系數(shù)法求解即可;(2)如圖作輔助線AE、BF垂直

x軸,設(shè)A(m,am2)、B(n,an2),由△AOE∽△OBF,可得到,然后表示出直線AB的解析式即可得到結(jié)論;(3)作PQ⊥AB于點(diǎn)Q,設(shè)P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2由PQ∥ON,可得ON=amt+at2,OM=–amt+at2,然后把ON,OM,OC的值代入整理即可.【詳解】(1)把點(diǎn)B(4,0),點(diǎn)P(1,–3)代入y=ax2+c(a≠0),,解之得,∴;(2)如圖作輔助線AE、BF垂直

x軸,設(shè)A(m,am2)、B(n,an2),∵OA⊥OB,∴∠AOE=∠OBF,∴△AOE∽△OBF,∴,,,直線AB過(guò)點(diǎn)A(m,am2)、點(diǎn)B(n,an2),∴過(guò)點(diǎn)(0,);(3)作PQ⊥AB于點(diǎn)Q,設(shè)P(m,am2+c)、A(–t,0)、B(t,0),則at2+c=0,c=–at2∵PQ∥ON,∴,ON=====at(m+t)=amt+at2,同理:OM=–amt+at2,所以,OM+ON=2at2=–2c=OC,所以,=.【點(diǎn)睛】本題考查了待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質(zhì),平行線分線段成比例定理.正確作出輔助線是解答本題的關(guān)鍵.23、(1)y=﹣x2﹣2x+1;(2)(﹣,)【解析】

(1)將A(-1,0),B(0,1),C(1,0)三點(diǎn)的坐標(biāo)代入y=ax2+bx+c,運(yùn)用待定系數(shù)法即可求出此拋物線的解析式;(2)先證明△AOB是等腰直角三角形,得出∠BAO=45°,再證明△PDE是等腰直角三角形,則PE越大,△PDE的周長(zhǎng)越大,再運(yùn)用待定系數(shù)法求出直線AB的解析式為y=x+1,則可設(shè)P點(diǎn)的坐標(biāo)為(x,-x2-2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根據(jù)二次函數(shù)的性質(zhì)可知當(dāng)x=-時(shí),PE最大,△PDE的周長(zhǎng)也最大.將x=-代入-x2-2x+1,進(jìn)而得到P點(diǎn)的坐標(biāo).【詳解】解:(1)∵拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(﹣1,0),B(0,1),C(1,0),∴,解得,∴拋物線的解析式為y=﹣x2﹣2x+1;(2)∵A(﹣1,0),B(0,1),∴OA=OB=1,∴△AOB是等腰直角三角形,∴∠BAO=45°.∵PF⊥x軸,∴∠AEF=90°﹣45°=45°,又∵PD⊥AB,∴△PDE是等腰直角三角形,∴PE越大,△PDE的周長(zhǎng)越大.設(shè)直線AB的解析式為y=kx+b,則,解得,即直線AB的解析式為y=x+1.設(shè)P點(diǎn)的坐標(biāo)為(x,﹣x2﹣2x+1),E點(diǎn)的坐標(biāo)為(x,x+1),則PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,所以當(dāng)x=﹣時(shí),PE最大,△PDE的周長(zhǎng)也最大.當(dāng)x=﹣時(shí),﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,即點(diǎn)P坐標(biāo)為(﹣,)時(shí),△PDE的周長(zhǎng)最大.【點(diǎn)睛】本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有運(yùn)用待定系數(shù)法求二次函數(shù)、一次函數(shù)的解析式,等腰直角三角形的判定與性質(zhì),二次函數(shù)的性質(zhì),三角形的周長(zhǎng),綜合性較強(qiáng),難度適中.24、證明過(guò)程見解析【解析】

由∠BAE=∠BCE=∠

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論