安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第1頁(yè)
安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第2頁(yè)
安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第3頁(yè)
安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第4頁(yè)
安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷及答案解析_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省宿州市五校高三第二次診斷性檢測(cè)新高考數(shù)學(xué)試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若函數(shù)的圖象過(guò)點(diǎn),則它的一條對(duì)稱軸方程可能是()A. B. C. D.2.直線與拋物線C:交于A,B兩點(diǎn),直線,且l與C相切,切點(diǎn)為P,記的面積為S,則的最小值為A. B. C. D.3.是虛數(shù)單位,則()A.1 B.2 C. D.4.已知拋物線的焦點(diǎn)為,是拋物線上兩個(gè)不同的點(diǎn),若,則線段的中點(diǎn)到軸的距離為()A.5 B.3 C. D.25.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.6.已知函數(shù),若,則的取值范圍是()A. B. C. D.7.點(diǎn)是單位圓上不同的三點(diǎn),線段與線段交于圓內(nèi)一點(diǎn)M,若,則的最小值為()A. B. C. D.8.空間點(diǎn)到平面的距離定義如下:過(guò)空間一點(diǎn)作平面的垂線,這個(gè)點(diǎn)和垂足之間的距離叫做這個(gè)點(diǎn)到這個(gè)平面的距離.已知平面,,兩兩互相垂直,點(diǎn),點(diǎn)到,的距離都是3,點(diǎn)是上的動(dòng)點(diǎn),滿足到的距離與到點(diǎn)的距離相等,則點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是()A. B.3 C. D.9.陀螺是中國(guó)民間較早的娛樂(lè)工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書(shū)中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線畫(huà)出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.10.下列函數(shù)中,既是奇函數(shù),又是上的單調(diào)函數(shù)的是()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體中的最長(zhǎng)棱長(zhǎng)為()A. B. C. D.12.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內(nèi)隨機(jī)取一點(diǎn),若此點(diǎn)取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關(guān)系不能確定二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負(fù)實(shí)數(shù),且,則的取值范圍為_(kāi)_____.14.在中,點(diǎn)在邊上,且,設(shè),,則________(用,表示)15.命題“”的否定是______.16.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_(kāi)____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在四棱錐中,平面平面ABCD,,,底面ABCD是邊長(zhǎng)為2的菱形,點(diǎn)E,F(xiàn)分別為棱DC,BC的中點(diǎn),點(diǎn)G是棱SC靠近點(diǎn)C的四等分點(diǎn).求證:(1)直線平面EFG;(2)直線平面SDB.18.(12分)在如圖所示的幾何體中,四邊形ABCD為矩形,平面ABEF⊥平面ABCD,EF∥AB,∠BAF=90°,AD=2,AB=AF=2EF=2,點(diǎn)P在棱DF上.(1)若P是DF的中點(diǎn),求異面直線BE與CP所成角的余弦值;(2)若二面角D﹣AP﹣C的正弦值為,求PF的長(zhǎng)度.19.(12分)已知函數(shù).(1)當(dāng)時(shí),求的單調(diào)區(qū)間.(2)設(shè)直線是曲線的切線,若的斜率存在最小值-2,求的值,并求取得最小斜率時(shí)切線的方程.(3)已知分別在,處取得極值,求證:.20.(12分)已知點(diǎn),直線與拋物線交于不同兩點(diǎn)、,直線、與拋物線的另一交點(diǎn)分別為兩點(diǎn)、,連接,點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)為點(diǎn),連接、.(1)證明:;(2)若的面積,求的取值范圍.21.(12分)為了解網(wǎng)絡(luò)外賣的發(fā)展情況,某調(diào)查機(jī)構(gòu)從全國(guó)各城市中抽取了100個(gè)相同等級(jí)地城市,分別調(diào)查了甲乙兩家網(wǎng)絡(luò)外賣平臺(tái)(以下簡(jiǎn)稱外賣甲、外賣乙)在今年3月的訂單情況,得到外賣甲該月訂單的頻率分布直方圖,外賣乙該月訂單的頻數(shù)分布表,如下圖表所示.訂單:(單位:萬(wàn)件)頻數(shù)1223訂單:(單位:萬(wàn)件)頻數(shù)402020102(1)現(xiàn)規(guī)定,月訂單不低于13萬(wàn)件的城市為“業(yè)績(jī)突出城市”,填寫(xiě)下面的列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲外賣乙總計(jì)(2)由頻率分布直方圖可以認(rèn)為,外賣甲今年3月在全國(guó)各城市的訂單數(shù)(單位:萬(wàn)件)近似地服從正態(tài)分布,其中近似為樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表),的值已求出,約為3.64,現(xiàn)把頻率視為概率,解決下列問(wèn)題:①?gòu)娜珖?guó)各城市中隨機(jī)抽取6個(gè)城市,記為外賣甲在今年3月訂單數(shù)位于區(qū)間的城市個(gè)數(shù),求的數(shù)學(xué)期望;②外賣甲決定在今年3月訂單數(shù)低于7萬(wàn)件的城市開(kāi)展“訂外賣,搶紅包”的營(yíng)銷活動(dòng)來(lái)提升業(yè)績(jī),據(jù)統(tǒng)計(jì),開(kāi)展此活動(dòng)后城市每月外賣訂單數(shù)將提高到平均每月9萬(wàn)件的水平,現(xiàn)從全國(guó)各月訂單數(shù)不超過(guò)7萬(wàn)件的城市中采用分層抽樣的方法選出100個(gè)城市不開(kāi)展?fàn)I銷活動(dòng),若每按一件外賣訂單平均可獲純利潤(rùn)5元,但每件外賣平均需送出紅包2元,則外賣甲在這100個(gè)城市中開(kāi)展?fàn)I銷活動(dòng)將比不開(kāi)展?fàn)I銷活動(dòng)每月多盈利多少萬(wàn)元?附:①參考公式:,其中.參考數(shù)據(jù):0.150.100.050.0250.0100.0012.7022.7063.8415.0246.63510.828②若,則,.22.(10分)設(shè)為實(shí)數(shù),已知函數(shù),.(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間:(2)設(shè)為實(shí)數(shù),若不等式對(duì)任意的及任意的恒成立,求的取值范圍;(3)若函數(shù)(,)有兩個(gè)相異的零點(diǎn),求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

把已知點(diǎn)坐標(biāo)代入求出,然后驗(yàn)證各選項(xiàng).【詳解】由題意,,或,,不妨取或,若,則函數(shù)為,四個(gè)選項(xiàng)都不合題意,若,則函數(shù)為,只有時(shí),,即是對(duì)稱軸.故選:B.【點(diǎn)睛】本題考查正弦型復(fù)合函數(shù)的對(duì)稱軸,掌握正弦函數(shù)的性質(zhì)是解題關(guān)鍵.2、D【解析】

設(shè)出坐標(biāo),聯(lián)立直線方程與拋物線方程,利用弦長(zhǎng)公式求得,再由點(diǎn)到直線的距離公式求得到的距離,得到的面積為,作差后利用導(dǎo)數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點(diǎn)到直線的距離從而.令當(dāng)時(shí),;當(dāng)時(shí),故,即的最小值為本題正確選項(xiàng):【點(diǎn)睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,考查利用導(dǎo)數(shù)求最值的問(wèn)題.解決圓錐曲線中的面積類最值問(wèn)題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導(dǎo)數(shù)或者利用函數(shù)值域的方法來(lái)求解最值.3、C【解析】

由復(fù)數(shù)除法的運(yùn)算法則求出,再由模長(zhǎng)公式,即可求解.【詳解】由.故選:C.【點(diǎn)睛】本題考查復(fù)數(shù)的除法和模,屬于基礎(chǔ)題.4、D【解析】

由拋物線方程可得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,由拋物線的定義可知,繼而可求出,從而可求出的中點(diǎn)的橫坐標(biāo),即為中點(diǎn)到軸的距離.【詳解】解:由拋物線方程可知,,即,.設(shè)則,即,所以.所以線段的中點(diǎn)到軸的距離為.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,考查了拋物線的方程.本題的關(guān)鍵是由拋物線的定義求得兩點(diǎn)橫坐標(biāo)的和.5、C【解析】

求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.6、B【解析】

對(duì)分類討論,代入解析式求出,解不等式,即可求解.【詳解】函數(shù),由得或解得.故選:B.【點(diǎn)睛】本題考查利用分段函數(shù)性質(zhì)解不等式,屬于基礎(chǔ)題.7、D【解析】

由題意得,再利用基本不等式即可求解.【詳解】將平方得,(當(dāng)且僅當(dāng)時(shí)等號(hào)成立),,的最小值為,故選:D.【點(diǎn)睛】本題主要考查平面向量數(shù)量積的應(yīng)用,考查基本不等式的應(yīng)用,屬于中檔題.8、D【解析】

建立平面直角坐標(biāo)系,將問(wèn)題轉(zhuǎn)化為點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值,利用到軸的距離等于到點(diǎn)的距離得到點(diǎn)軌跡方程,得到,進(jìn)而得到所求最小值.【詳解】如圖,原題等價(jià)于在直角坐標(biāo)系中,點(diǎn),是第一象限內(nèi)的動(dòng)點(diǎn),滿足到軸的距離等于點(diǎn)到點(diǎn)的距離,求點(diǎn)的軌跡上的點(diǎn)到軸的距離的最小值.設(shè),則,化簡(jiǎn)得:,則,解得:,即點(diǎn)的軌跡上的點(diǎn)到的距離的最小值是.故選:.【點(diǎn)睛】本題考查立體幾何中點(diǎn)面距離最值的求解,關(guān)鍵是能夠準(zhǔn)確求得動(dòng)點(diǎn)軌跡方程,進(jìn)而根據(jù)軌跡方程構(gòu)造不等關(guān)系求得最值.9、C【解析】

根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒(méi)被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.10、C【解析】

對(duì)選項(xiàng)逐個(gè)驗(yàn)證即得答案.【詳解】對(duì)于,,是偶函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,,定義域?yàn)?,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤;對(duì)于,當(dāng)時(shí),;當(dāng)時(shí),;又時(shí),.綜上,對(duì),都有,是奇函數(shù).又時(shí),是開(kāi)口向上的拋物線,對(duì)稱軸,在上單調(diào)遞增,是奇函數(shù),在上是單調(diào)遞增函數(shù),故選項(xiàng)正確;對(duì)于,在上單調(diào)遞增,在上單調(diào)遞增,但,在上不是單調(diào)函數(shù),故選項(xiàng)錯(cuò)誤.故選:.【點(diǎn)睛】本題考查函數(shù)的基本性質(zhì),屬于基礎(chǔ)題.11、C【解析】

根據(jù)三視圖,可得該幾何體是一個(gè)三棱錐,并且平面SAC平面ABC,,過(guò)S作,連接BD,,再求得其它的棱長(zhǎng)比較下結(jié)論.【詳解】如圖所示:由三視圖得:該幾何體是一個(gè)三棱錐,且平面SAC平面ABC,,過(guò)S作,連接BD,則,所以,,,,該幾何體中的最長(zhǎng)棱長(zhǎng)為.故選:C【點(diǎn)睛】本題主要考查三視圖還原幾何體,還考查了空間想象和運(yùn)算求解的能力,屬于中檔題.12、B【解析】

先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點(diǎn)取自陰影部分的概率為.又,故.故選B.【點(diǎn)睛】本題考查了幾何概型,定積分的計(jì)算以及幾何意義,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因?yàn)?,令,則,因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,,即,令則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí)函數(shù)有最大值為,即.當(dāng)且,即,或,時(shí)取等號(hào);因?yàn)?當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,令,則函數(shù)的對(duì)稱軸為,所以當(dāng)時(shí),函數(shù)有最小值為,即,當(dāng),且時(shí)取等號(hào),所以.故答案為:【點(diǎn)睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運(yùn)算求解能力和知識(shí)的綜合運(yùn)用能力;基本不等式:和的靈活運(yùn)用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.14、【解析】

結(jié)合圖形及向量的線性運(yùn)算將轉(zhuǎn)化為用向量表示,即可得到結(jié)果.【詳解】在中,因?yàn)椋?,又因?yàn)?,所以.故答案為:【點(diǎn)睛】本題主要考查三角形中向量的線性運(yùn)算,關(guān)鍵是利用已知向量為基底,將未知向量通過(guò)幾何條件向基底轉(zhuǎn)化.15、,【解析】

根據(jù)特稱命題的否定為全稱命題得到結(jié)果即可.【詳解】解:因?yàn)樘胤Q命題的否定是全稱命題,所以,命題,則該命題的否定是:,故答案為:,.【點(diǎn)睛】本題考查全稱命題與特稱命題的否定關(guān)系,屬于基礎(chǔ)題.16、【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過(guò)作,過(guò)作,畫(huà)出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補(bǔ)角.在三角形中,,故.【點(diǎn)睛】本小題主要考查空間兩條直線所成角的余弦值的計(jì)算,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析(2)見(jiàn)解析【解析】

(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,再證明即可.(2)證明與即可.【詳解】(1)連接AC、BD交于點(diǎn)O,交EF于點(diǎn)H,連接GH,所以O(shè)為AC的中點(diǎn),H為OC的中點(diǎn),由E、F為DC、BC的中點(diǎn),再由題意可得,所以在三角形CAS中,平面EFG,平面EFG,所以直線平面EFG.(2)在中,,,,由余弦定理得,,即,解得,由勾股定理逆定理可知,因?yàn)閭?cè)面底面ABCD,由面面垂直的性質(zhì)定理可知平面ABCD,所以,因?yàn)榈酌鍭BCD是菱形,所以,因?yàn)?所以平面SDB.【點(diǎn)睛】本題考查線面平行與垂直的證明.需要根據(jù)題意利用等比例以及余弦定理勾股定理等證明.屬于中檔題.18、(1).(2).【解析】

(1)以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,則(﹣1,0,2),(﹣2,﹣1,1),計(jì)算夾角得到答案.(2)設(shè),0≤λ≤1,計(jì)算P(0,2λ,2﹣2λ),計(jì)算平面APC的法向量(1,﹣1,),平面ADF的法向量(1,0,0),根據(jù)夾角公式計(jì)算得到答案.【詳解】(1)∵BAF=90°,∴AF⊥AB,又∵平面ABEF⊥平面ABCD,且平面ABEF∩平面ABCD=AB,∴AF⊥平面ABCD,又四邊形ABCD為矩形,∴以A為原點(diǎn),AB為x軸,AD為y軸,AF為z軸,建立空間直角坐標(biāo)系,∵AD=2,AB=AF=2EF=2,P是DF的中點(diǎn),∴B(2,0,0),E(1,0,2),C(2,2,0),P(0,1,1),(﹣1,0,2),(﹣2,﹣1,1),設(shè)異面直線BE與CP所成角的平面角為θ,則cosθ,∴異面直線BE與CP所成角的余弦值為.(2)A(0,0,0),C(2,2,0),F(xiàn)(0,0,2),D(0,2,0),設(shè)P(a,b,c),,0≤λ≤1,即(a,b,c﹣2)=λ(0,2,﹣2),解得a=0,b=2λ,c=2﹣2λ,∴P(0,2λ,2﹣2λ),(0,2λ,2﹣2λ),(2,2,0),設(shè)平面APC的法向量(x,y,z),則,取x=1,得(1,﹣1,),平面ADP的法向量(1,0,0),∵二面角D﹣AP﹣C的正弦值為,∴|cos|,解得,∴P(0,,),∴PF的長(zhǎng)度|PF|.【點(diǎn)睛】本題考查了異面直線夾角,根據(jù)二面角求長(zhǎng)度,意在考查學(xué)生的空間想象能力和計(jì)算能力.19、(1)單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為;(2),;(3)證明見(jiàn)解析.【解析】

(1)由的正負(fù)可確定的單調(diào)區(qū)間;(2)利用基本不等式可求得時(shí),取得最小值,由導(dǎo)數(shù)的幾何意義可知,從而求得,求得切點(diǎn)坐標(biāo)后,可得到切線方程;(3)由極值點(diǎn)的定義可知是的兩個(gè)不等正根,由判別式大于零得到的取值范圍,同時(shí)得到韋達(dá)定理的形式;化簡(jiǎn)為,結(jié)合的范圍可證得結(jié)論.【詳解】(1)由題意得:的定義域?yàn)?,?dāng)時(shí),,,當(dāng)和時(shí),;當(dāng)時(shí),,的單調(diào)遞增區(qū)間為,;單調(diào)遞減區(qū)間為.(2),所以(當(dāng)且僅當(dāng),即時(shí)取等號(hào)),切線的斜率存在最小值,,解得:,,即切點(diǎn)為,從而切線方程,即:.(3),分別在,處取得極值,,是方程,即的兩個(gè)不等正根.則,解得:,且,.,,,即不等式成立.【點(diǎn)睛】本題考查導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用,涉及到利用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間、導(dǎo)數(shù)幾何意義的應(yīng)用、利用導(dǎo)數(shù)證明不等式等知識(shí);本題中證明不等式的關(guān)鍵是能夠通過(guò)極值點(diǎn)的定義將問(wèn)題轉(zhuǎn)變?yōu)橐辉畏匠谈姆植紗?wèn)題.20、(1)見(jiàn)解析;(2).【解析】

(1)設(shè)點(diǎn)、,求出直線、的方程,與拋物線的方程聯(lián)立,求出點(diǎn)、的坐標(biāo),利用直線、的斜率相等證明出;(2)設(shè)點(diǎn)到直線、的距離分別為、,求出,利用相似得出,可得出的邊上的高,并利用弦長(zhǎng)公式計(jì)算出,即可得出關(guān)于的表達(dá)式,結(jié)合不等式可解出實(shí)數(shù)的取值范圍.【詳解】(1)設(shè)點(diǎn)、,則,直線的方程為:,由,消去并整理得,由韋達(dá)定理可知,,,代入直線的方程,得,解得,同理,可得,,,,代入得,因此,;(2)設(shè)點(diǎn)到直線、的距離分別為、,則,由(1)知,,,,,,同理,得,,由,整理得,由韋達(dá)定理得,,,得,設(shè)點(diǎn)到直線的高為,則,,,,解得,因此,實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題考查直線與直線平行的證明,考查實(shí)數(shù)的取值范圍的求法,考查拋物線、直線方程、韋達(dá)定理、弦長(zhǎng)公式、直線的斜率等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想,是難題.21、(1)見(jiàn)解析,有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①4.911②100萬(wàn)元.【解析】

(1)根據(jù)頻率分布直方圖與頻率分布表,易得兩個(gè)外賣平臺(tái)中月訂單不低于13萬(wàn)件的城市數(shù)量,即可完善列聯(lián)表.通過(guò)計(jì)算的觀測(cè)值,即可結(jié)合臨界值作出判斷.(2)①先根據(jù)所給數(shù)據(jù)求得樣本平均值,根據(jù)所給今年3月訂單數(shù)區(qū)間,并由及求得,.結(jié)合正態(tài)分布曲線性質(zhì)可求得,再由二項(xiàng)分布的數(shù)學(xué)期望求法求解.②訂單數(shù)低于7萬(wàn)件的城市有和兩組,根據(jù)分層抽樣的性質(zhì)可確定各組抽取樣本數(shù).分別計(jì)算出開(kāi)展?fàn)I銷活動(dòng)與不開(kāi)展?fàn)I銷活動(dòng)的利潤(rùn),比較即可得解.【詳解】(1)對(duì)于外賣甲:月訂單不低于13萬(wàn)件的城市數(shù)量為,對(duì)于外賣乙:月訂單不低于13萬(wàn)件的城市數(shù)量為.由以上數(shù)據(jù)完善列聯(lián)表如下圖,業(yè)績(jī)突出城市業(yè)績(jī)不突出城市總計(jì)外賣甲4060100外賣乙5248100總計(jì)92108200且的觀測(cè)值為,∴有90%的把握認(rèn)為“是否為業(yè)績(jī)突出城市”與“選擇網(wǎng)絡(luò)外賣平臺(tái)”有關(guān).(2)①樣本平均數(shù),故==,,的數(shù)學(xué)期望,②由分層抽樣知,則100個(gè)城市中每月

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論