版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
山西省河津二中2025屆高一下數(shù)學(xué)期末調(diào)研試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若x+2y=4,則2x+4y的最小值是()A.4 B.8 C.2 D.42.設(shè),,,則()A. B. C. D.3.已知點、、在圓上運(yùn)動,且,若點的坐標(biāo)為,的最大值為()A. B. C. D.4.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交5.已知圓C的半徑為2,在圓內(nèi)隨機(jī)取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.6.已知函數(shù)在上是減函數(shù),則實數(shù)的取值范圍是()A. B. C. D.7.在中,已知,,,則的形狀為()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定8.記為等差數(shù)列的前n項和.若,,則等差數(shù)列的公差為()A.1 B.2 C.4 D.89.不等式的解集是()A. B. C. D.10.已知集合A={1,2,3,4},B={2,3,4,5},則A∩B中元素的個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.如圖,為內(nèi)一點,且,延長交于點,若,則實數(shù)的值為_______.12.函數(shù)的定義域________.13.若向量與平行.則__.14.公比為2的等比數(shù)列的各項都是正數(shù),且,則的值為___________15.設(shè)為偶函數(shù),則實數(shù)的值為________.16.設(shè)為虛數(shù)單位,復(fù)數(shù)的模為______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知△ABC中,A(1,﹣4),B(6,6),C(﹣2,0).求(1)過點A且平行于BC邊的直線的方程;(2)BC邊的中線所在直線的方程.18.直線經(jīng)過點,且與圓相交與兩點,截得的弦長為,求的方程.19.已知為等邊角形,.點滿足,,.設(shè).試用向量和表示;若,求的值.20.已知函數(shù).(Ⅰ)求函數(shù)的最小正周期;(Ⅱ)求函數(shù)在區(qū)間上的最值以及相應(yīng)的x的取值.21.如圖,已知以點為圓心的圓與直線相切.過點的動直線與圓A相交于M,N兩點,Q是的中點,直線與相交于點P.(1)求圓A的方程;(2)當(dāng)時,求直線的方程.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由,當(dāng)且僅當(dāng)時,即等號成立,故選B.考點:基本不等式.2、B【解析】
根據(jù)與特殊點的比較可得因為,,,從而得到,得出答案.【詳解】解:因為,,,所以.故選:B【點睛】本題主要考查指數(shù)函數(shù)和對數(shù)函數(shù)的單調(diào)性與特殊點的問題,要熟記一些特殊點,如,,.3、C【解析】
由題意可知為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點),然后利用平面向量模的三角不等式以及圓的幾何性質(zhì)可得出的最大值.【詳解】如下圖所示:,為圓的一條直徑,由平面向量加法的平行四邊形法則可得(為坐標(biāo)原點),由平面向量模的三角不等式可得,當(dāng)且僅當(dāng)點的坐標(biāo)為時,等號成立,因此,的最大值為.故選:C.【點睛】本題考查向量模的最值問題,涉及平面向量模的三角不等式以及圓的幾何性質(zhì)的應(yīng)用,考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.4、D【解析】
若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.5、B【解析】
先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當(dāng)時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內(nèi),所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.6、C【解析】
根據(jù)復(fù)合函數(shù)單調(diào)性,結(jié)合對數(shù)型函數(shù)的定義域列不等式組,解不等式組求得的取值范圍.【詳解】由于的底數(shù)為,而函數(shù)在上是減函數(shù),根據(jù)復(fù)合函數(shù)單調(diào)性同增異減可知,結(jié)合對數(shù)型函數(shù)的定義域得,解得.故選:C【點睛】本小題主要考查根據(jù)對數(shù)型復(fù)合函數(shù)單調(diào)性求參數(shù)的取值范圍,屬于基礎(chǔ)題.7、A【解析】
由正弦定理得出,從而得出可能為鈍角或銳角,分類討論這兩種情況,結(jié)合正弦函數(shù)的單調(diào)性即可判斷.【詳解】由正弦定理得可能為鈍角或銳角當(dāng)為鈍角時,,符合題意,所以為鈍角三角形;當(dāng)為銳角時,由于在區(qū)間上單調(diào)遞增,則,所以,即為鈍角三角形綜上,為鈍角三角形故選:A【點睛】本題主要考查了利用正弦定理判斷三角形的形狀,屬于中檔題.8、B【解析】
利用等差數(shù)列的前n項和公式、通項公式列出方程組,能求出等差數(shù)列{an}的公差.【詳解】∵為等差數(shù)列的前n項和,,,∴,解得d=2,a1=5,∴等差數(shù)列的公差為2.故選:B.【點睛】本題考查等差數(shù)列的公差,此類問題根據(jù)題意設(shè)公差和首項為d、a1,列出方程組解出即可,屬于基礎(chǔ)題.9、A【解析】
分解因式,即可求得.【詳解】進(jìn)行分解因式可得:,故不等式解集為:故選:A.【點睛】本題考查一元二次不等式的求解,屬基礎(chǔ)知識題.10、C【解析】
求出A∩B即得解.【詳解】由題得A∩B={2,3,4},所以A∩B中元素的個數(shù)是3.故選:C【點睛】本題主要考查集合的交集的計算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,得,可得出,再利用、、三點共線的向量結(jié)論得出,可解出實數(shù)的值.【詳解】由,得,可得出,由于、、三點共線,,解得,故答案為.【點睛】本題考查三點共線問題的處理,解題的關(guān)鍵就是利用三點共線的向量等價條件的應(yīng)用,考查運(yùn)算求解的能力,屬于中等題.12、.【解析】
根據(jù)反正弦函數(shù)的定義得出,解出可得出所求函數(shù)的定義域.【詳解】由反正弦的定義可得,解得,因此,函數(shù)的定義域為,故答案為:.【點睛】本題考查反正弦函數(shù)的定義域,解題的關(guān)鍵就是正弦值域的應(yīng)用,考查運(yùn)算求解能力,屬于基礎(chǔ)題.13、【解析】
由題意利用兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算法則,求得的值.【詳解】由題意,向量與平行,所以,解得.故答案為.【點睛】本題主要考查了兩個向量共線的性質(zhì),兩個向量坐標(biāo)形式的運(yùn)算,著重考查了推理與計算能力,屬于基礎(chǔ)題.14、2【解析】
根據(jù)等比數(shù)列的性質(zhì)與基本量法求解即可.【詳解】由題,因為,又等比數(shù)列的各項都是正數(shù),故.故.故答案為:【點睛】本題主要考查了等比數(shù)列的等積性與各項之間的關(guān)系.屬于基礎(chǔ)題.15、4【解析】
根據(jù)偶函數(shù)的定義知,即可求解.【詳解】因為為偶函數(shù),所以,故,解得.故填4.【點睛】本題主要考查了偶函數(shù)的定義,利用定義求參數(shù)的取值,屬于中檔題.16、5【解析】
利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡,然后代入復(fù)數(shù)模的公式,即可求得答案.【詳解】由題意,復(fù)數(shù),則復(fù)數(shù)的模為.故答案為5【點睛】本題主要考查了復(fù)數(shù)的乘法運(yùn)算,以及復(fù)數(shù)模的計算,其中熟記復(fù)數(shù)的運(yùn)算法則,和復(fù)數(shù)模的公式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)3x﹣4y﹣19=1(2)7x﹣y﹣11=1【解析】
(1)先求出BC的斜率,再用點斜式求出過點A且平行于BC邊的直線方程;
(2)先求出BC的中點為D的坐標(biāo),再用兩點式求出直線AD的方程.【詳解】(1)△ABC中,∵A(1,﹣4),B(6,6),C(﹣2,1),故BC的斜率為,故過點A且平行于BC邊的直線的方程為y+4(x﹣1),即3x﹣4y﹣19=1.(2)BC的中點為D(2,3),由兩點式求出BC邊的中線所在直線AD的方程為,即7x﹣y﹣11=1.【點睛】本題主要考查直線的斜率公式,用點斜式、兩點式求直線的方程,屬于基礎(chǔ)題.18、或【解析】
直線截圓得的弦長為,結(jié)合圓的半徑為5,利用勾股定理可得圓心到直線的距離,再利用點到直線的距離公式列方程求出直線斜率,由點斜式可得結(jié)果.【詳解】設(shè)直線的方程為,即,因為圓的半徑為5,截得的弦長為所以圓心到直線的距離,即或,∴所求直線的方程為或.【點睛】本題主要考查點到直線距離公式以及圓的弦長的求法,求圓的弦長有兩種方法:一是利用弦長公式,結(jié)合韋達(dá)定理求解;二是利用半弦長,弦心距,圓半徑構(gòu)成直角三角形,利用勾股定理求解.19、(1);;(2).【解析】
(1)根據(jù)向量線性運(yùn)算法則可直接求得結(jié)果;(2)根據(jù)(1)的結(jié)論將已知等式化為;根據(jù)等邊三角形邊長和夾角可將等式變?yōu)殛P(guān)于的方程,解方程求得結(jié)果.【詳解】(1)(2)為等邊三角形且,即:,解得:【點睛】本題考查平面向量線性運(yùn)算、數(shù)量積運(yùn)算的相關(guān)知識;關(guān)鍵是能夠?qū)⒌仁睫D(zhuǎn)化為已知模長和夾角的向量的數(shù)量積運(yùn)算的形式,根據(jù)向量數(shù)量積的定義求得結(jié)果.20、(Ⅰ);(Ⅱ)時,取得最大值2;時,取得最小值.【解析】
(Ⅰ)利用二倍角和兩角和與差以及輔助角公式將函數(shù)化為y=Asin(ωx+φ)的形式,利用三角函數(shù)的周期公式求函數(shù)的最小正周期.(Ⅱ)利用x∈[,]上時,求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值.【詳解】(Ⅰ)因為函數(shù)f(x)=4cosxsin(x)1.化簡可得:f(x)=4cosxsinxcos4cos2xsin1sin2x+2cos2x1sin2x+cos2x=2sin(2x)所以的最小正周期為.(Ⅱ)因為,所以.當(dāng),即時,f(x)取得最大值2;當(dāng),即時,f(x)取得最小值-1.【點睛】本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡是解決本題的關(guān)鍵,屬于基礎(chǔ)題.21、(1).(2)或【解析】
(1)圓心到切線的距離等于圓的半徑,從而易得圓標(biāo)準(zhǔn)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《GBT 16471-2008運(yùn)輸包裝件尺寸與質(zhì)量界限》專題研究報告
- 《GBT 4701.10-2008鈦鐵 硫含量的測定 紅外線吸收法和燃燒中和滴定法》專題研究報告深度
- 道路安全救援培訓(xùn)總結(jié)課件
- 道路安全培訓(xùn)動員課件
- 2025-2026年蘇教版九年級地理上冊期末試卷含答案
- 2026年廣西壯族自治區(qū)賀州市高職單招數(shù)學(xué)考試題庫(附含答案)
- 道外消防安全培訓(xùn)課件
- 2025CARCSTR實踐指南:肺癌的CT篩查解讀課件
- 邊界安全內(nèi)部培訓(xùn)教程課件
- 數(shù)控機(jī)床安全操作模擬演練方案及流程
- 2025年國家開放大學(xué)《公共經(jīng)濟(jì)學(xué)》期末考試備考試題及答案解析
- 腫瘤生物學(xué)1(完整版)
- 2023年世界上最坑人的搞笑腦筋急轉(zhuǎn)彎整理
- 廣西建設(shè)領(lǐng)域?qū)I(yè)技術(shù)人員三新技術(shù)網(wǎng)絡(luò)培訓(xùn)考試題目及答案
- 情緒的作文400字五篇
- 【藍(lán)光】藍(lán)光電梯的調(diào)試資料
- NY/T 682-2003畜禽場場區(qū)設(shè)計技術(shù)規(guī)范
- GB/T 33725-2017表殼體及其附件耐磨損、劃傷和沖擊試驗
- FZ/T 01057.1-2007紡織纖維鑒別試驗方法 第1部分:通用說明
- 實習(xí)協(xié)議模板(最新版)
- 不同GMP法規(guī)間的區(qū)別
評論
0/150
提交評論