版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
云南省瀾滄縣第一中學2025屆高一數(shù)學第二學期期末學業(yè)水平測試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列滿足,則()A.10 B.20 C.100 D.2002.已知向量,,,且,則實數(shù)的值為A. B. C. D.3.如果存在實數(shù),使成立,那么實數(shù)的取值范圍是()A. B.或C.或 D.或4.若關于的不等式的解集為,則的取值范圍是()A. B. C. D.5.已知圓與直線切于點,則直線的方程為()A. B. C. D.6.一個圓柱的軸截面是正方形,其側面積與一個球的表面積相等,那么這個圓柱的體積與這個球的體積之比為()A.1:3 B.3:1 C.2:3 D.3:27.已知圓C的半徑為2,在圓內隨機取一點P,并以P為中點作弦AB,則弦長的概率為A. B. C. D.8.《九章算術》中有如下問題:“今有勾五步,股一十二步,問勾中容圓,徑幾何?”其大意:“已知直角三角形兩直角邊長分別為5步和12步,問其內切圓的直徑為多少步?”現(xiàn)若向此三角形內隨機投一粒豆子,則豆子落在其內切圓外的概率是()A. B. C. D.9.某班設計了一個八邊形的班徽(如圖),它由腰長為1,頂角為的四個等腰三角形,及其底邊構成的正方形所組成,該八邊形的面積為A.; B.C. D.10.在中,內角,,的對邊分別為,,,若,且,則的形狀為()A.等邊三角形 B.等腰直角三角形C.最大角為銳角的等腰三角形 D.最大角為鈍角的等腰三角形二、填空題:本大題共6小題,每小題5分,共30分。11.定義為數(shù)列的均值,已知數(shù)列的均值,記數(shù)列的前項和是,若對于任意的正整數(shù)恒成立,則實數(shù)k的取值范圍是________.12.若圓與圓的公共弦長為,則________.13.與30°角終邊相同的角_____________.14.已知,,是與的等比中項,則最小值為_________.15.已知等比數(shù)列an中,a3=2,a16.已知在數(shù)列中,,,則數(shù)列的通項公式______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.據(jù)某市供電公司數(shù)據(jù),2019年1月份市新能源汽車充電量約270萬度,同比2018年增長,為了增強新能源汽車的推廣運用,政府加大了充電樁等基礎設施的投入.現(xiàn)為了了解該城市充電樁等基礎設施的使用情況,隨機選取了200個駕駛新能源汽車的司機進行問卷調查,根據(jù)其滿意度評分值(百分制)按照,,…,分成5組,制成如圖所示的頻率分布直方圖.(1)求圖中的值并估計樣本數(shù)據(jù)的中位數(shù);(2)已知滿意度評分值在內的男女司機人數(shù)比為,從中隨機抽取2人進行座談,求2人均為女司機的概率.18.解關于的方程:19.某工廠共有200名工人,已知這200名工人去年完成的產品數(shù)都在區(qū)間(單位:萬件)內,其中每年完成14萬件及以上的工人為優(yōu)秀員工,現(xiàn)將其分成5組,第1組、第2組第3組、第4組、第5組對應的區(qū)間分別為,,,,,并繪制出如圖所示的頻率分布直方圖.(1)選取合適的抽樣方法從這200名工人中抽取容量為25的樣本,求這5組分別應抽取的人數(shù);(2)現(xiàn)從(1)中25人的樣本中的優(yōu)秀員工中隨機選取2名傳授經驗,求選取的2名工人在同一組的概率.20.已知是的內角,分別是角的對邊.若,(1)求角的大小;(2)若,的面積為,為的中點,求21.在平面直角坐標系中,為坐標原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數(shù),求的值域.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由題可得數(shù)列是以為首相,為公差的等差數(shù)列,求出數(shù)列的通項公式,進而求出【詳解】因為,所以數(shù)列是以為首項,為公差的等差數(shù)列,所以,則【點睛】本題考查由遞推公式證明數(shù)列是等差數(shù)列以及等差數(shù)列的通項公式,屬于一般題.2、A【解析】
求出的坐標,由得,得到關于的方程.【詳解】,,因為,所以,故選A.【點睛】本題考查向量減法和數(shù)量積的坐標運算,考查運算求解能力.3、A【解析】
根據(jù),可得,再根據(jù)基本不等式取等的條件可得答案.【詳解】因為,所以,即,即,又(當且僅當時等號成立)所以,所以.故選:A【點睛】本題考查了余弦函數(shù)的值域,考查了基本不等式取等的條件,屬于中檔題.4、C【解析】
根據(jù)對數(shù)的性質列不等式,根據(jù)一元二次不等式恒成立時,判別式和開口方向的要求列不等式組,解不等式組求得的取值范圍.【詳解】由得,即恒成立,由于時,在上不恒成立,故,解得.故選:C.【點睛】本小題主要考查對數(shù)函數(shù)的性質,考查一元二次不等式恒成立的條件,屬于基礎題.5、A【解析】
利用點與圓心連線的直線與所求直線垂直,求出斜率,即可求過點與圓C相切的直線方程;【詳解】圓可化為:,顯然過點的直線不與圓相切,則點與圓心連線的直線斜率為,則所求直線斜率為,代入點斜式可得,整理得。故選A.【點睛】本題考查直線方程,考查直線與圓的位置關系,考查分類討論的數(shù)學思想,屬于中檔題.6、D【解析】
設圓柱的底面半徑為,利用圓柱側面積公式與球的表面積公式建立關系式,算出球的半徑,再利用圓柱與球的體積公式加以計算,可得所求體積之比.【詳解】設圓柱的底面半徑為,軸截面正方形邊長,則,可得圓柱的側面積,再設與圓柱表面積相等的球半徑為,則球的表面積,解得,因此圓柱的體積為,球的體積為,因此圓柱的體積與球的體積之比為.故選:D.【點睛】本題主要考查了圓柱的側面積和體積公式,以及球的表面積和體積公式的應用,其中解答中熟記公式,合理計算半徑之間的關系是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、B【解析】
先求出臨界狀態(tài)時點P的位置,若,則點P與點C的距離必須大于或等于臨界狀態(tài)時與點C的距離,再根據(jù)幾何概型的概率計算公式求解.【詳解】如圖所示:當時,此時,若,則點P必須位于以點C為圓心,半徑為1和半徑為2的圓環(huán)內,所以弦長的概率為:.故選B.【點睛】本題主要考查幾何概型與圓的垂徑定理,此類題型首先要求出臨界狀態(tài)時的情況,再判斷滿足條件的區(qū)域.8、C【解析】
本題首先可以根據(jù)直角三角形的三邊長求出三角形的內切圓半徑,然后分別計算出內切圓和三角形的面積,最后通過幾何概型的概率計算公式即可得出答案.【詳解】如圖所示,直角三角形的斜邊長為,設內切圓的半徑為,則,解得.所以內切圓的面積為,所以豆子落在內切圓外部的概率,故選C.【點睛】本題主要考查“面積型”的幾何概型,屬于中檔題.解決幾何概型問題常見類型有:長度型、角度型、面積型、體積型,求與面積有關的幾何概型問題關鍵是計算問題的總面積以及事件的面積;幾何概型問題還有以下幾點容易造成失分,在備考時要高度關注:(1)不能正確判斷事件是古典概型還是幾何概型導致錯誤;(2)基本事件對應的區(qū)域測度把握不準導致錯誤;(3)利用幾何概型的概率公式時,忽視驗證事件是否等可能性導致錯誤.9、A【解析】
試題分析:利用余弦定理求出正方形面積;利用三角形知識得出四個等腰三角形面積;故八邊形面積.故本題正確答案為A.考點:余弦定理和三角形面積的求解.【方法點晴】本題是一道關于三角函數(shù)在幾何中的應用的題目,掌握正余弦定理是解題的關鍵;首先根據(jù)三角形面積公式求出個三角形的面積;接下來利用余弦定理可求出正方形的邊長的平方,進而得到正方形的面積,最后得到答案.10、D【解析】
先由余弦定理,結合題中條件,求出,再由,求出,進而可得出三角形的形狀.【詳解】因為,所以,,所以.又,所以,則的形狀為最大角為鈍角的等腰三角形.故選D【點睛】本題主要考查三角形的形狀的判定,熟記余弦定理即可,屬于??碱}型.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
因為,,從而求出,可得數(shù)列為等差數(shù)列,記數(shù)列為,從而將對任意的恒成立化為,,即可求得答案.【詳解】,,故,,則,對也成立,,則,數(shù)列為等差數(shù)列,記數(shù)列為.故對任意的恒成立,可化為:,;即,解得,,故答案為:.【點睛】本題考查了根據(jù)遞推公式求數(shù)列通項公式和數(shù)列的單調性,掌握判斷數(shù)列前項和最大值的方法是解題關鍵,考查了分析能力和計算能力,屬于中檔題.12、【解析】將兩個方程兩邊相減可得,即代入可得,則公共弦長為,所以,解之得,應填.13、【解析】
根據(jù)終邊相同的角的定義可得答案.【詳解】與30°角終邊相同的角,故答案為:【點睛】本題考查了終邊相同的角的定義,屬于基礎題.14、1【解析】
根據(jù)等比中項定義得出的關系,然后用“1”的代換轉化為可用基本不等式求最小值.【詳解】由題意,所以,所以,當且僅當,即時等號成立.所以最小值為1.故答案為:1.【點睛】本題考查等比中項的定義,考查用基本不等式求最值.解題關鍵是用“1”的代換找到定值,從而可用基本不等式求最值.15、4【解析】
先計算a5【詳解】aaa故答案為4【點睛】本題考查了等比數(shù)列的計算,意在考查學生的計算能力.16、【解析】
通過變形可知,累乘計算即得結論.【詳解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案為:an=n.【點睛】本題考查數(shù)列的通項公式的求法,利用累乘法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1),中位數(shù)的估計值為75(2)【解析】
(1)根據(jù)頻率和為1計算,再判斷中位數(shù)落在第三組內,再計算中位數(shù).(2)該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.排列出所有可能,計算滿足條件的個數(shù),相除得到答案.【詳解】解:(1)根據(jù)頻率和為1得.則.第一組和第二組的頻率和為,則中位數(shù)落在第三組內.由于第三組的頻率為0.4,所以中位數(shù)的估計值為75.(2)設事件:隨機抽取2人進行座談,2人均為女司機.的人數(shù)為人.∴該組男司機3人,女司機2人.記男司機為:,,,女司機為:,.5人抽取2人進行座談有:,,,,,,,,,共10個基本事件.其中2人均為女司機的基本事件為.∴.∴隨機抽取2人進行座談,2人均為女司機的概率是.【點睛】本題考查了中位數(shù)和概率的計算,意在考查學生的計算能力和應用能力.18、【解析】
根據(jù)方程解出或,利用三角函數(shù)的定義解出,再根據(jù)終邊相同角的表示即可求出.【詳解】由,得,所以或,所以或,所以的解集為:.【點睛】本題考查了三角方程的解法,終邊相同角的表示,反三角函數(shù)的定義,考查計算能力,屬于基礎題.19、(1)第1組:2;第2組:8,;第3組:9;第4組:3;第5組:3(2)【解析】
(1)根據(jù)頻率之和為列方程,解方程求得的值.然后根據(jù)分層抽樣的計算方法,計算出每組抽取的人數(shù).(2)利用列舉法,結合古典概型概率計算公式,計算出所求概率.【詳解】(1):,.用分層抽樣比較合適.第1組應抽取的人數(shù)為,第2組應抽取的人數(shù)為,第3組應抽取的人數(shù)為,第4組應抽取的人數(shù)為,第5組應抽取的人數(shù)為.(2)(1)中25人的樣本中的優(yōu)秀員工中,第4組有3人,記這3人分別為,第5組有3人,記這3人分別為.從這6人中隨機選取2名,所有的基本事件為:,,,,,,,,,,,,,,,共有15個基本事件.選取的2名工人在同一組的基本事件有,,,,,共6個,故選取的2名工人在同一組的概率為.【點睛】本小題主要考查補全頻率分布,考查分層抽樣,考查古典概型的計算,屬于基礎題.20、(1)(2)【解析】
(1)由,可將,轉化為,,代入原式,根據(jù)正弦定理可得,結合余弦定理,及,可得角C的大小。(2)因為,所以。所以為等腰三角形,根據(jù)面積為,可得,在,,,,結合余弦定理,即可求解?!驹斀狻浚?)由得由正弦定理,得,即所以又,則(2)因為,所以.所以為等腰三角形,且頂角.因為所以.在中,,,,所以解得.【點睛】本題考查同角三角函數(shù)的基本關系,正弦定理,余弦定理,求面積公式,綜合性較強,考查學生分析推理,計算化簡的能力,屬基礎題。21、(1)或;(2)當時的值域為.時的值域為.【解析】分析:(1)由已知表示出向量,再根據(jù),且,建立方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 排危除險合同范本
- 攪拌分工合同范本
- 2025年城市廢物處理與資源循環(huán)項目可行性研究報告
- 旅游用餐合同范本
- 日租車協(xié)議書范本
- 舊設備回收協(xié)議書
- 改水管免責協(xié)議書
- 報紙運輸合同范本
- 合作鋼結構協(xié)議書
- 掛面進超市協(xié)議書
- 全冊教案-2025-2026學年度二年級上冊音樂人音版
- 登高作業(yè)應急處理指南
- 居間服務費合同(標準版)
- 消防愛裝管裝教育課件
- 腦梗死診療指南
- 設備工程師年終工作總結
- 《油氣儲存企業(yè)安全風險評估細則(2025年修訂)》解讀
- 四旋翼無人機飛行原理
- GB/T 45966.1-2025石油天然氣工業(yè)井完整性第1部分:生命周期管理
- 流動車接種活動方案
- 高風險行業(yè)安全管理措施與環(huán)保體系評估
評論
0/150
提交評論