版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
廣東省廣州市白云區(qū)華師附中新世界學(xué)校2025屆數(shù)學(xué)九上期末預(yù)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.一個圓錐的底面直徑是8cm,母線長為9cm,則圓錐的全面積為()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm22.若關(guān)于的一元二次方程有實數(shù)根,則的值不可能是()A. B. C.0 D.20183.如圖,在平面直角坐標(biāo)系中,若干個半徑為2個單位長度,圓心角為的扇形組成一條連續(xù)的曲線,點從原點出發(fā),沿這條曲線向右上下起伏運動,點在直線上的速度為每秒2個單位長度,點在弧線上的速度為每秒個單位長度,則2019秒時,點的坐標(biāo)是()A. B. C. D.4.已知函數(shù)的圖像上兩點,,其中,則與的大小關(guān)系為()A. B. C. D.無法判斷5.將化成的形式為()A. B.C. D.6.如圖,在6×6的正方形網(wǎng)格中,△ABC的頂點都在小正方形的頂點上,則tan∠BAC的值是()A. B. C. D.7.如圖,某一時刻太陽光下,小明測得一棵樹落在地面上的影子長為2.8米,落在墻上的影子高為1.2米,同一時刻同一地點,身高1.6米他在陽光下的影子長0.4米,則這棵樹的高為()米.A.6.2 B.10 C.11.2 D.12.48.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或09.如圖所示,⊙的半徑為13,弦的長度是24,,垂足為,則A.5 B.7 C.9 D.1110.已知關(guān)于x的一元二次方程有兩個實數(shù)根,則k的取值范圍是()A. B.且C.且 D.11.如圖,在矩形中,,對角線相交于點,垂直平分于點,則的長為()A.4 B. C.5 D.12.已知函數(shù)y=(k-1)x2-4x+4的圖象與x軸只有一個交點,則k的取值范圍是()A.k≤2且k≠1 B.k<2且k≠1C.k=2 D.k=2或1二、填空題(每題4分,共24分)13.定義:如果一元二次方程ax2+bx+c=1(a≠1)滿足a+b+c=1.那么我們稱這個方程為“鳳凰”方程,已知ax2+bx+c=1(a≠1)是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結(jié)論:①a=c,②a=b,③b=c,④a=b=c,正確的是_____(填序號).14.如圖,線段AB=2,分別以A、B為圓心,以AB的長為半徑作弧,兩弧交于C、D兩點,則陰影部分的面積為.15.從一批節(jié)能燈中隨機抽取40只進行檢查,發(fā)現(xiàn)次品2只,則在這批節(jié)能燈中隨機抽取一只是次品的概率為_______.16.如圖,在半徑AC為2,圓心角為90°的扇形內(nèi),以BC為直徑作半圓,交弦AB于點D,連接CD,則圖中陰影部分的面積是.17.若用αn表示正n邊形的中心角,則邊長為4的正十二邊形的中心角是____.18.一只不透明的袋子中裝有紅球和白球共個,這些球除了顏色外都相同,校課外學(xué)習(xí)小組做摸球試驗,將球攪勻后任意摸出一個球,記下顏色后放回、攪勻,通過多次重復(fù)試驗,算得摸到紅球的頻率是,則袋中有__________.三、解答題(共78分)19.(8分)已知x2+xy+y=12,y2+xy+x=18,求代數(shù)式3x2+3y2﹣2xy+x+y的值.20.(8分)已知:在平面直角坐標(biāo)系中,拋物線()交x軸于A、B兩點,交y軸于點C,且對稱軸為直線x=-2.(1)求該拋物線的解析式及頂點D的坐標(biāo);(2)若點P(0,t)是y軸上的一個動點,請進行如下探究:探究一:如圖1,設(shè)△PAD的面積為S,令W=t·S,當(dāng)0<t<4時,W是否有最大值?如果有,求出W的最大值和此時t的值;如果沒有,說明理由;探究二:如圖2,是否存在以P、A、D為頂點的三角形與Rt△AOC相似?如果存在,求點P的坐標(biāo);如果不存在,請說明理由.21.(8分)如圖,的三個頂點坐標(biāo)分別是,,.(1)將先向左平移4個單位長度,再向上平移2個單位長度,得到,畫出;(2)與關(guān)于原點成中心對稱,畫出.22.(10分)解方程:3(x﹣4)2=﹣2(x﹣4)23.(10分)新能源汽車已逐漸成為人們的交通工具,據(jù)某市某品牌新能源汽車經(jīng)銷商1至3月份統(tǒng)計,該品牌新能源汽車1月份銷售150輛,3月份銷售216輛.(1)求該品牌新能源汽車銷售量的月均增長率;(2)若該品牌新能源汽車的進價為6.3萬元/輛,售價為6.8萬元/輛,則該經(jīng)銷商1至3月份共盈利多少萬元?24.(10分)解方程:3x(x﹣1)=2﹣2x.25.(12分)(特例感知)(1)如圖①,∠ABC是⊙O的圓周角,BC為直徑,BD平分∠ABC交⊙O于點D,CD=3,BD=4,則點D到直線AB的距離為.(類比遷移)(2)如圖②,∠ABC是⊙O的圓周角,BC為⊙O的弦,BD平分∠ABC交⊙O于點D,過點D作DE⊥BC,垂足為E,探索線段AB、BE、BC之間的數(shù)量關(guān)系,并說明理由.(問題解決)(3)如圖③,四邊形ABCD為⊙O的內(nèi)接四邊形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,則△ABC的內(nèi)心與外心之間的距離為.26.如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=10cm,P為BC的中點,動點Q從點P出發(fā),沿射線PC方向以cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設(shè)點Q運動的時間為t秒.(1)當(dāng)t=2.5s時,判斷直線AB與⊙P的位置關(guān)系,并說明理由.(2)已知⊙O為Rt△ABC的外接圓,若⊙P與⊙O相切,求t的值.
參考答案一、選擇題(每題4分,共48分)1、B【分析】利用圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長和扇形的面積公式計算出圓錐的側(cè)面積,然后計算側(cè)面積與底面積的和.【詳解】解:圓錐的全面積=π×42+×2π×4×9=52π(cm2).故選:B.【點睛】本題考查了圓錐的計算:圓錐的側(cè)面展開圖為一扇形,這個扇形的弧長等于圓錐底面的周長,扇形的半徑等于圓錐的母線長.2、A【分析】由題意直接根據(jù)一元二次方程根的判別式,進行分析計算即可求出答案.【詳解】解:由題意可知:△==4+4m≥0,∴m≥-1,的值不可能是-2.故選:A.【點睛】本題考查一元二次方程,解題的關(guān)鍵是熟練運用一元二次方程的根的判別式進行分析求解.3、B【分析】設(shè)第n秒運動到Pn(n為自然數(shù))點,根據(jù)點P的運動規(guī)律找出部分Pn點的坐標(biāo),根據(jù)坐標(biāo)的變化找出變化規(guī)律依此規(guī)律即可得出結(jié)論.【詳解】解:作于點A.秒∴1秒時到達點,2秒時到達點,3秒時到達點,……,.,.∴,,,,設(shè)第n秒運動到為自然數(shù)點,觀察,發(fā)現(xiàn)規(guī)律:,,,,,,,,,,,,故選:B.【點睛】本題考查了解直角三角形,弧長的計算及列代數(shù)式表示規(guī)律,先通過弧長的計算,算出每秒點P達到的位置,再表示出開始幾個點的坐標(biāo),從而找出其中的規(guī)律.4、B【分析】由二次函數(shù)可知,此函數(shù)的對稱軸為x=2,二次項系數(shù)a=?1<0,故此函數(shù)的圖象開口向下,有最大值;函數(shù)圖象上的點與坐標(biāo)軸越接近,則函數(shù)值越大,故可求解.【詳解】函數(shù)的對稱軸為x=2,二次函數(shù)開口向下,有最大值,∵,A到對稱軸x=2的距離比B點到對稱軸的距離遠,∴故選:B.【點睛】本題的關(guān)鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)y=ax2+bx+c(a≠0)的圖象性質(zhì).5、C【分析】本小題先將二次項的系數(shù)提出后再將括號里運用配方法配成完全平方式即可.【詳解】由得:故選C【點睛】本題考查的知識點是配方法,掌握配方的方法及防止漏乘是關(guān)鍵.6、C【分析】過點B作BD⊥AC,交AC延長線于點D,利用正切函數(shù)的定義求解可得.【詳解】如圖,過點B作BD⊥AC,交AC延長線于點D,則tan∠BAC==,故選C.【點睛】本題主要考查三角函數(shù)的定義,解題的關(guān)鍵是掌握正切函數(shù)的定義:銳角A的對邊a與鄰邊b的比叫做∠A的正切.7、D【分析】先根據(jù)同一時刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度,再加上落在墻上的影長即得答案.【詳解】解:設(shè)從墻上的影子的頂端到樹的頂端的垂直高度是x米,則,解得:x=11.2,所以樹高=11.2+1.2=12.4(米),故選:D.【點睛】本題考查的是投影的知識,解本題的關(guān)鍵是正確理解題意、根據(jù)同一時刻物體的高度與其影長成比例求出從墻上的影子的頂端到樹的頂端的垂直高度.8、C【分析】利用因式分解法求解可得.【詳解】解:∵x2=2x,∴x2﹣2x=0,則x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故選:C.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.9、A【詳解】試題分析:已知⊙O的半徑為13,弦AB的長度是24,,垂足為N,由垂徑定理可得AN=BN=12,再由勾股定理可得ON=5,故答案選A.考點:垂徑定理;勾股定理.10、C【分析】若一元二次方程有兩個實數(shù)根,則根的判別式△=b24ac≥1,建立關(guān)于k的不等式,求出k的取值范圍.還要注意二次項系數(shù)不為1.【詳解】解:∵一元二次方程有兩個實數(shù)根,∴,解得:,∵,∴k的取值范圍是且;故選:C.【點睛】本題考查了一元二次方程根的判別式的應(yīng)用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.11、B【分析】由矩形的性質(zhì)和線段垂直平分線的性質(zhì)證出OA=AB=OB=3,得出BD=2OB=6,由勾股定理求出AD即可.【詳解】解:∵四邊形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD=;故選:B.【點睛】此題考查了矩形的性質(zhì)、等邊三角形的判定與性質(zhì)、線段垂直平分線的性質(zhì)、勾股定理;熟練掌握矩形的性質(zhì),證明三角形是等邊三角形是解決問題的關(guān)鍵.12、D【分析】當(dāng)k+1=0時,函數(shù)為一次函數(shù)必與x軸有一個交點;當(dāng)k+1≠0時,函數(shù)為二次函數(shù),根據(jù)條件可知其判別式為0,可求得k的值.【詳解】當(dāng)k-1=0,即k=1時,函數(shù)為y=-4x+4,與x軸只有一個交點;當(dāng)k-1≠0,即k≠1時,由函數(shù)與x軸只有一個交點可知,∴△=(-4)2-4(k-1)×4=0,解得k=2,綜上可知k的值為1或2,故選D.【點睛】本題主要考查函數(shù)與x軸的交點,掌握二次函數(shù)與x軸只有一個交點的條件是解題的關(guān)鍵,解決本題時注意考慮一次函數(shù)和二次函數(shù)兩種情況.二、填空題(每題4分,共24分)13、①【分析】由方程有兩個相等的實數(shù)根,得到根的判別式等于1,再由a+b+c=1,把表示出b代入根的判別式中,變形后即可得到a=c.【詳解】解:∵方程有兩個相等實數(shù)根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,將b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,則a=c.故答案為:①.【點睛】此題考查了根的判別式,以及一元二次方程的解,一元二次方程中根的判別式大于1,方程有兩個不相等的實數(shù)根;根的判別式等于1,方程有兩個相等的實數(shù)根;根的判別式小于1,方程無解.14、【分析】利用扇形的面積公式等邊三角形的性質(zhì)解決問題即可.【詳解】解:由題意可得,AD=BD=AB=AC=BC,∴△ABD和△ABC時等邊三角形,∴陰影部分的面積為:故答案為﹣4.【點睛】考核知識點:扇形面積.熟記扇形面積是關(guān)鍵.15、【分析】利用概率公式求解可得.【詳解】解:在這批節(jié)能燈中隨機抽取一只是次品的概率為=,故答案為:.【點睛】本題考查概率公式,熟練掌握計算法則是解題關(guān)鍵.16、π﹣1.【詳解】解:在Rt△ACB中,AB==,∵BC是半圓的直徑,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D為半圓的中點,S陰影部分=S扇形ACB﹣S△ADC==π﹣1.故答案為π﹣1.考點:扇形面積的計算.17、30o【分析】根據(jù)正多邊形的中心角的定義,可得正十二邊形的中心角是:360°÷12=30°.【詳解】正十二邊形的中心角是:360°÷12=30°.故答案為:30o.【點睛】此題考查了正多邊形的中心角.此題比較簡單,注意準(zhǔn)確掌握定義是關(guān)鍵.18、1【分析】在同樣條件下,大量反復(fù)試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出方程求解.【詳解】設(shè)袋中有x個紅球.
由題意可得:,解得:,
故答案為:1.【點睛】本題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關(guān)鍵是根據(jù)紅球的頻率得到相應(yīng)的等量關(guān)系.三、解答題(共78分)19、或【分析】分別將已知的兩個等式相加和相減,得到(x+y)2+(x+y)=30,(x+y-1)(x﹣y)=﹣6,即可求得x、y的值,再求代數(shù)式的值即可.【詳解】解:由x2+xy+y=12①,y2+xy+x=18②,①+②,得(x+y)2+(x+y)=30③,①﹣②,得(x+y-1)(x﹣y)=﹣6④,由③得(x+y+6)(x+y﹣5)=0,∴x+y=﹣6或x+y=5⑤,∴將⑤分別代入④得,x﹣y=或x﹣y=﹣,∴或當(dāng)時,當(dāng)時,
故答案為:或【點睛】本題考查解二元一次方程組;理解題意,將已知式子進行合理的變形,再求二元一次方程組的解是解題的關(guān)鍵.20、(1),D(-2,4).(2)①當(dāng)t=3時,W有最大值,W最大值=1.②存在.只存在一點P(0,2)使Rt△ADP與Rt△AOC相似.【解析】(1)由拋物線的對稱軸求出a,就得到拋物線的表達式了;
(2)①下面探究問題一,由拋物線表達式找出A,B,C三點的坐標(biāo),作DM⊥y軸于M,再由面積關(guān)系:SPAD=S梯形OADM-SAOP-SDMP得到t的表達式,從而W用t表示出來,轉(zhuǎn)化為求最值問題.
②難度較大,運用分類討論思想,可以分三種情況:
(1)當(dāng)∠P1DA=90°時;(2)當(dāng)∠P2AD=90°時;(3)當(dāng)AP3D=90°時。【詳解】解:(1)∵拋物線y=ax2-x+3(a≠0)的對稱軸為直線x=-2.∴D(-2,4).(2)探究一:當(dāng)0<t<4時,W有最大值.
∵拋物線交x軸于A、B兩點,交y軸于點C,
∴A(-6,0),B(2,0),C(0,3),
∴OA=6,OC=3.
當(dāng)0<t<4時,作DM⊥y軸于M,
則DM=2,OM=4.
∵P(0,t),
∴OP=t,MP=OM-OP=4-t.
∵S三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2t
∴W=t(12-2t)=-2(t-3)2+1
∴當(dāng)t=3時,W有最大值,W最大值=1.
探究二:
存在.分三種情況:
①當(dāng)∠P1DA=90°時,作DE⊥x軸于E,則OE=2,DE=4,∠DEA=90°,
∴AE=OA-OE=6-2=4=DE.
∴∠DAE=∠ADE=45°,∴∠P1DE=∠P1DA-∠ADE=90°-45°=45度.
∵DM⊥y軸,OA⊥y軸,
∴DM∥OA,
∴∠MDE=∠DEA=90°,
∴∠MDP1=∠MDE-∠P1DE=90°-45°=45度.
∴P1M=DM=2,此時又因為∠AOC=∠P1DA=90°,
∴Rt△ADP1∽Rt△AOC,
∴OP1=OM-P1M=4-2=2,
∴P1(0,2).
∴當(dāng)∠P1DA=90°時,存在點P1,使Rt△ADP1∽Rt△AOC,
此時P1點的坐標(biāo)為(0,2)
②當(dāng)∠P2AD=90°時,則∠P2AO=45°,∴△P2AD與△AOC不相似,此時點P2不存在.③當(dāng)∠AP3D=90°時,以AD為直徑作⊙O1,則⊙O1的半徑圓心O1到y(tǒng)軸的距離d=4.
∵d>r,
∴⊙O1與y軸相離.
不存在點P3,使∠AP3D=90度.
∴綜上所述,只存在一點P(0,2)使Rt△ADP與Rt△AOC相似.21、答案見解析.【分析】(1)將的三個頂點進行平移得到對應(yīng)點,再順次連接即可求解;(2)找到△ABC的三個得到關(guān)于原點的對稱點,再順次連接即可求解.【詳解】(1)為所求;(2)為所求.【點睛】此題主要考查坐標(biāo)與圖形,解題的關(guān)鍵是根據(jù)題意找到各頂點的對應(yīng)點.22、x1=4,x2=.【解析】移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可.【詳解】3(x﹣4)2=﹣2(x﹣4),3(x﹣4)2+2(x﹣4)=0,(x﹣4)[3(x﹣4)+2]=0,x﹣4=0,3(x﹣4)+2=0,x1=4,x2=.【點睛】本題考查了解一元二次方程,能選擇適當(dāng)?shù)姆椒ń庖辉畏匠淌墙獯祟}的關(guān)鍵,注意:解一元二次方程的方法有因式分解法、公式法、配方法、直接開平方法.23、(1)品牌新能源汽車月均增長率為20%;(2)經(jīng)銷商1至3月份共盈利273萬元.【分析】(1)設(shè)新能源汽車銷售量的月均增長率為,根據(jù)3月份銷售216輛列方程,再解方程即可得到答案;(2)利用1至3月份的總銷量乘以每輛車的盈利,即可得到答案.【詳解】解:(1)設(shè)新能源汽車銷售量的月均增長率為,根據(jù)題意得150(1+)2=216(1+)2=1.44解得:,(不合題意、舍去)0.2=20%答:該品牌新能源汽車月均增長率為20%(2)2月份銷售新能源汽車150×(1+20%)=180輛(150+180+216)×(6.8-6.3)=273答:該經(jīng)銷商1至3月份共盈利273萬元.【點睛】本題考查的是一元二次方程的應(yīng)用,掌握利用一元二次方程解決增長率問題是解題的關(guān)鍵.24、x1=1,x2=﹣.【解析】把右邊的項移到左邊,用提公因式法因式分解求出方程的根.【詳解】解:3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0,3x+2=0,解得x1=1,x2=﹣.考點:解一元二次方程-因式分解法;因式分解-提公因式法.25、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求,(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE進而可證△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易證BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如圖易得四邊形BEDF為正方形,BD是對角線,可得正方形邊長為7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC內(nèi)切圓,M為圓心,N為切點,由切線長定理可得,所以O(shè)N=5-4=1由面積法易得內(nèi)切圓半徑為2【詳解】解:(1)由AB是直徑可得∠BDC=90°,根據(jù)勾股定理可得BC=5過點D分別作DE⊥BC于點E,DF⊥BA于點F由BD平分∠ABC可得DE=DF=,DF即為所求(2)過點D分別作DE⊥BC于點E,DF⊥BA于點F由∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 代招合同協(xié)議書
- 花木世界活動策劃方案(3篇)
- 畫展活動游戲策劃方案(3篇)
- 比武比賽活動策劃方案(3篇)
- 打樁工程合同范本及注意事項
- 法務(wù)部門合同審核流程與模板
- 2025年期貨交易外匯平倉合同協(xié)議
- 汽車配件銷售合同協(xié)議范本
- 樓面砂漿施工方案(3篇)
- 玻璃封頂施工方案(3篇)
- 2025江蘇鹽城市水務(wù)集團有限公司招聘專業(yè)人員34人筆試題庫歷年考點版附帶答案詳解
- 學(xué)堂在線 雨課堂 學(xué)堂云 實驗室安全密碼 章節(jié)測試答案
- 華為培訓(xùn)心得體會
- 電力工程技術(shù)檔案管理制度
- 2025國考銀行結(jié)構(gòu)化面試題庫及答案解析
- 法務(wù)升職述職報告
- MCN機構(gòu)與抖音達人簽約協(xié)議范本7篇
- 光學(xué)鏡片制作工基礎(chǔ)考核試卷及答案
- 膠帶生產(chǎn)線投資可行性研究報告
- 新勞動課程標(biāo)準(zhǔn)下的小學(xué)勞動教育課的探究
- 繼電保護傳動試驗課件
評論
0/150
提交評論