2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第11講 直線與圓、圓與圓的位置關(guān)系(教師版)_第1頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第11講 直線與圓、圓與圓的位置關(guān)系(教師版)_第2頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第11講 直線與圓、圓與圓的位置關(guān)系(教師版)_第3頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第11講 直線與圓、圓與圓的位置關(guān)系(教師版)_第4頁(yè)
2024年高中數(shù)學(xué)新高二暑期培優(yōu)講義第11講 直線與圓、圓與圓的位置關(guān)系(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)第11講直線與圓、圓與圓的位置關(guān)系【題型歸納目錄】題型一:不含參數(shù)(含參數(shù))的直線與圓的位置關(guān)系題型二:由直線與圓的位置關(guān)系求參數(shù)、求直線與圓的交點(diǎn)坐標(biāo)題型三:切線與切線長(zhǎng)問(wèn)題題型四:弦長(zhǎng)問(wèn)題題型五:判斷圓與圓的位置關(guān)系題型六:由圓的位置關(guān)系確定參數(shù)題型七:公共弦與切點(diǎn)弦問(wèn)題題型八:公切線問(wèn)題題型九:圓中范圍與最值問(wèn)題題型十:圓系問(wèn)題【知識(shí)點(diǎn)梳理】知識(shí)點(diǎn)一:直線與圓的位置關(guān)系1、直線與圓的位置關(guān)系:(1)直線與圓相交,有兩個(gè)公共點(diǎn);(2)直線與圓相切,只有一個(gè)公共點(diǎn);(3)直線與圓相離,沒(méi)有公共點(diǎn).2、直線與圓的位置關(guān)系的判定:(1)代數(shù)法:判斷直線SKIPIF1<0與圓C的方程組成的方程組是否有解.如果有解,直線SKIPIF1<0與圓C有公共點(diǎn).有兩組實(shí)數(shù)解時(shí),直線SKIPIF1<0與圓C相交;有一組實(shí)數(shù)解時(shí),直線SKIPIF1<0與圓C相切;無(wú)實(shí)數(shù)解時(shí),直線SKIPIF1<0與圓C相離.(2)幾何法:由圓C的圓心到直線SKIPIF1<0的距離SKIPIF1<0與圓的半徑SKIPIF1<0的關(guān)系判斷:當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與圓C相交;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與圓C相切;當(dāng)SKIPIF1<0時(shí),直線SKIPIF1<0與圓C相離.知識(shí)點(diǎn)詮釋?zhuān)?1)當(dāng)直線和圓相切時(shí),求切線方程,一般要用到圓心到直線的距離等于半徑,記住常見(jiàn)切線方程,可提高解題速度;求切線長(zhǎng),一般要用到切線長(zhǎng)、圓的半徑、圓外點(diǎn)與圓心連線構(gòu)成的直角三角形,由勾股定理解得.(2)當(dāng)直線和圓相交時(shí),有關(guān)弦長(zhǎng)的問(wèn)題,要用到弦心距、半徑和半弦構(gòu)成的直角三角形,也是通過(guò)勾股定理解得,有時(shí)還用到垂徑定理.(3)當(dāng)直線和圓相離時(shí),常討論圓上的點(diǎn)到直線的距離問(wèn)題,通常畫(huà)圖,利用數(shù)形結(jié)合來(lái)解決.知識(shí)點(diǎn)二:圓的切線方程的求法1、點(diǎn)SKIPIF1<0在圓上,如圖.法一:利用切線的斜率SKIPIF1<0與圓心和該點(diǎn)連線的斜率SKIPIF1<0的乘積等于SKIPIF1<0,即SKIPIF1<0.法二:圓心SKIPIF1<0到直線SKIPIF1<0的距離等于半徑SKIPIF1<0.2、點(diǎn)SKIPIF1<0在圓外,則設(shè)切線方程:SKIPIF1<0,變成一般式:SKIPIF1<0,因?yàn)榕c圓相切,利用圓心到直線的距離等于半徑,解出SKIPIF1<0.知識(shí)點(diǎn)詮釋?zhuān)阂驗(yàn)榇藭r(shí)點(diǎn)在圓外,所以切線一定有兩條,即方程一般是兩個(gè)根,若方程只有一個(gè)根,則還有一條切線的斜率不存在,務(wù)必要把這條切線補(bǔ)上.常見(jiàn)圓的切線方程:(1)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程是SKIPIF1<0;(2)過(guò)圓SKIPIF1<0上一點(diǎn)SKIPIF1<0的切線方程是SKIPIF1<0.知識(shí)點(diǎn)三:求直線被圓截得的弦長(zhǎng)的方法1、應(yīng)用圓中直角三角形:半徑SKIPIF1<0,圓心到直線的距離SKIPIF1<0,弦長(zhǎng)SKIPIF1<0具有的關(guān)系SKIPIF1<0,這也是求弦長(zhǎng)最常用的方法.2、利用交點(diǎn)坐標(biāo):若直線與圓的交點(diǎn)坐標(biāo)易求出,求出交點(diǎn)坐標(biāo)后,直接用兩點(diǎn)間的距離公式計(jì)算弦長(zhǎng).知識(shí)點(diǎn)四:圓與圓的位置關(guān)系1、圓與圓的位置關(guān)系:(1)圓與圓相交,有兩個(gè)公共點(diǎn);(2)圓與圓相切(內(nèi)切或外切),有一個(gè)公共點(diǎn);(3)圓與圓相離(內(nèi)含或外離),沒(méi)有公共點(diǎn).2、圓與圓的位置關(guān)系的判定:(1)代數(shù)法:判斷兩圓的方程組成的方程組是否有解.有兩組不同的實(shí)數(shù)解時(shí),兩圓相交;有一組實(shí)數(shù)解時(shí),兩圓相切;方程組無(wú)解時(shí),兩圓相離.(2)幾何法:設(shè)SKIPIF1<0的半徑為SKIPIF1<0,SKIPIF1<0的半徑為SKIPIF1<0,兩圓的圓心距為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),兩圓相交;當(dāng)SKIPIF1<0時(shí),兩圓外切;當(dāng)SKIPIF1<0時(shí),兩圓外離;當(dāng)SKIPIF1<0時(shí),兩圓內(nèi)切;當(dāng)SKIPIF1<0時(shí),兩圓內(nèi)含.知識(shí)點(diǎn)詮釋?zhuān)号卸▓A與圓的位置關(guān)系主要是利用幾何法,通過(guò)比較兩圓的圓心距和兩圓的半徑的關(guān)系來(lái)確定,這種方法運(yùn)算量小.也可利用代數(shù)法,但是利用代數(shù)法解決時(shí),一是運(yùn)算量大,二是方程組僅有一解或無(wú)解時(shí),兩圓的位置關(guān)系不明確,還要比較兩圓的圓心距和兩圓半徑的關(guān)系來(lái)確定.因此,在處理圓與圓的位置關(guān)系時(shí),一般不用代數(shù)法.3、兩圓公共弦長(zhǎng)的求法有兩種:方法一:將兩圓的方程聯(lián)立,解出兩交點(diǎn)的坐標(biāo),利用兩點(diǎn)間的距離公式求其長(zhǎng).方法二:求出公共弦所在直線的方程,利用勾股定理解直角三角形,求出弦長(zhǎng).4、兩圓公切線的條數(shù)與兩個(gè)圓都相切的直線叫做兩圓的公切線,圓的公切線包括外公切線和內(nèi)公切線兩種.(1)兩圓外離時(shí),有2條外公切線和2條內(nèi)公切線,共4條;(2)兩圓外切時(shí),有2條外公切線和1條內(nèi)公切線,共3條;(3)兩圓相交時(shí),只有2條外公切線;(4)兩圓內(nèi)切時(shí),只有1條外公切線;(5)兩圓內(nèi)含時(shí),無(wú)公切線.【典例例題】題型一:不含參數(shù)(含參數(shù))的直線與圓的位置關(guān)系例1.直線SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系為(

)A.相交 B.相切 C.相離 D.與SKIPIF1<0的值有關(guān)【答案】A【解析】直線SKIPIF1<0,即SKIPIF1<0,因此直線SKIPIF1<0恒過(guò)定點(diǎn)SKIPIF1<0,因SKIPIF1<0,即點(diǎn)A在圓SKIPIF1<0內(nèi),所以直線SKIPIF1<0與圓SKIPIF1<0相交.故選:A例2.已知直線SKIPIF1<0與圓SKIPIF1<0,則下列說(shuō)法錯(cuò)誤的是(

)A.對(duì)SKIPIF1<0,直線恒過(guò)一定點(diǎn)B.SKIPIF1<0,使直線與圓相切C.對(duì)SKIPIF1<0,直線與圓一定相交D.直線與圓相交且直線被圓所截得的最短弦長(zhǎng)為SKIPIF1<0【答案】B【解析】直線SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,即直線恒過(guò)定點(diǎn)SKIPIF1<0,故A正確;圓SKIPIF1<0,即圓SKIPIF1<0,圓心SKIPIF1<0,半徑SKIPIF1<0,則SKIPIF1<0,即點(diǎn)SKIPIF1<0在圓內(nèi),所以直線與圓一定相交,故B錯(cuò)誤,故C正確,當(dāng)SKIPIF1<0時(shí)直線與圓相交且直線被圓所截得的弦長(zhǎng)最短,最短弦長(zhǎng)SKIPIF1<0,故D正確,故選:B.題型二:由直線與圓的位置關(guān)系求參數(shù)、求直線與圓的交點(diǎn)坐標(biāo)例3.直線SKIPIF1<0與圓SKIPIF1<0沒(méi)有公共點(diǎn),則SKIPIF1<0的取值范圍是(

)A.SKIPIF1<0或SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】A【解析】因?yàn)閳ASKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,則點(diǎn)SKIPIF1<0到直線SKIPIF1<0的距離大于SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0;故選:A.例4.關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩解,則k的范圍為(

)A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】根據(jù)題意可知,SKIPIF1<0表示的直線恒過(guò)定點(diǎn)SKIPIF1<0,對(duì)SKIPIF1<0兩邊同平方并移項(xiàng)得SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0表示的是圓SKIPIF1<0的上半部分,若關(guān)于SKIPIF1<0的方程SKIPIF1<0有兩解,即直線SKIPIF1<0與上半圓SKIPIF1<0有兩個(gè)交點(diǎn),畫(huà)出圖象如下圖所示:易知SKIPIF1<0,定點(diǎn)SKIPIF1<0,即SKIPIF1<0兩點(diǎn)之間的斜率SKIPIF1<0,同理SKIPIF1<0,當(dāng)直線從SKIPIF1<0位置繞點(diǎn)SKIPIF1<0沿順時(shí)針?lè)较蛐D(zhuǎn)到SKIPIF1<0位置時(shí)滿足題意,所以需滿足SKIPIF1<0,即SKIPIF1<0.故選:C題型三:切線與切線長(zhǎng)問(wèn)題例15.圓SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為_(kāi)___________.【答案】SKIPIF1<0【解析】設(shè)圓SKIPIF1<0的圓心SKIPIF1<0SKIPIF1<0,點(diǎn)SKIPIF1<0SKIPIF1<0將SKIPIF1<0代入圓的方程成立,所以SKIPIF1<0在圓上,SKIPIF1<0與切線垂直,所以切線斜率SKIPIF1<0,切線方程為SKIPIF1<0,即SKIPIF1<0.故答案為:SKIPIF1<0例6.由直線SKIPIF1<0上一點(diǎn)SKIPIF1<0向圓SKIPIF1<0引切線,則切線長(zhǎng)的最小值為_(kāi)_____.【答案】SKIPIF1<0【解析】設(shè)過(guò)點(diǎn)SKIPIF1<0的切線與圓SKIPIF1<0相切于點(diǎn)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0,圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0與直線SKIPIF1<0垂直時(shí),SKIPIF1<0取最小值,且最小值為SKIPIF1<0,所以,SKIPIF1<0,即切線長(zhǎng)的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.例7.已知圓SKIPIF1<0,直線SKIPIF1<0,SKIPIF1<0為直線SKIPIF1<0上的動(dòng)點(diǎn),過(guò)SKIPIF1<0作圓SKIPIF1<0的切線SKIPIF1<0,切點(diǎn)為SKIPIF1<0,則四邊形SKIPIF1<0的面積的最小值為_(kāi)_______【答案】SKIPIF1<0【解析】由題知,⊙M:SKIPIF1<0,圓心為SKIPIF1<0,半徑SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0上的點(diǎn)SKIPIF1<0的最短距離為SKIPIF1<0,所以切線長(zhǎng)SKIPIF1<0,故四邊形SKIPIF1<0的面積的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.題型四:弦長(zhǎng)問(wèn)題例8.若直線SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0兩點(diǎn),則弦SKIPIF1<0的長(zhǎng)為_(kāi)_____.【答案】SKIPIF1<0【解析】由圓的方程得:圓心為SKIPIF1<0,半徑SKIPIF1<0,SKIPIF1<0圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.例9.圓SKIPIF1<0的一條弦以點(diǎn)SKIPIF1<0為中點(diǎn),則該弦的斜率為_(kāi)_.【答案】SKIPIF1<0/-0.5【解析】將SKIPIF1<0配方得SKIPIF1<0,圓心為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0弦以點(diǎn)SKIPIF1<0為中點(diǎn),SKIPIF1<0該弦的斜率為SKIPIF1<0.故答案為:SKIPIF1<0.例10.設(shè)SKIPIF1<0為實(shí)數(shù),若直線SKIPIF1<0與圓SKIPIF1<0相交于M,N兩點(diǎn),且SKIPIF1<0,則SKIPIF1<0_________.【答案】-1或3【解析】圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0,圓心為SKIPIF1<0,半徑為SKIPIF1<0,直線SKIPIF1<0的一般方程為SKIPIF1<0,所以圓心到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0故答案為:-1或3.題型五:判斷圓與圓的位置關(guān)系例11.圓SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系是(

)A.外離 B.外切 C.相交 D.內(nèi)切【答案】C【解析】?jī)蓤A化為標(biāo)準(zhǔn)形式,可得SKIPIF1<0與圓SKIPIF1<0,可知半徑SKIPIF1<0,SKIPIF1<0,于是SKIPIF1<0,而SKIPIF1<0,故兩圓相交,故選:SKIPIF1<0.例12.已知圓SKIPIF1<0與圓SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0的位置關(guān)系為(

)A.相交 B.外切 C.外離 D.內(nèi)含【答案】A【解析】因?yàn)閳ASKIPIF1<0圓心為SKIPIF1<0,半徑為SKIPIF1<0,圓SKIPIF1<0圓心為SKIPIF1<0,半徑為SKIPIF1<0,所以SKIPIF1<0,易知,SKIPIF1<0,所以圓SKIPIF1<0與圓SKIPIF1<0相交.故選:A.題型六:由圓的位置關(guān)系確定參數(shù)例13.已知圓SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0外切,則實(shí)數(shù)m的值為_(kāi)________.【答案】3【解析】圓SKIPIF1<0的標(biāo)準(zhǔn)方程為SKIPIF1<0.圓SKIPIF1<0:SKIPIF1<0,∴SKIPIF1<0.又∵兩圓外切,∴SKIPIF1<0,解得m=3.故答案為:3.例14.已知圓SKIPIF1<0,以點(diǎn)SKIPIF1<0為圓心,半徑為r的圓與圓C有公共點(diǎn),則r的取值范圍為_(kāi)_____.【答案】SKIPIF1<0【解析】由題知SKIPIF1<0的圓心為SKIPIF1<0,兩圓心的距離SKIPIF1<0.因?yàn)閮蓤A有公共點(diǎn),即相交或相切,所以SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0題型七:公共弦與切點(diǎn)弦問(wèn)題例15.已知圓SKIPIF1<0:SKIPIF1<0過(guò)圓SKIPIF1<0:SKIPIF1<0的圓心,則兩圓相交弦的方程為_(kāi)_____.【答案】SKIPIF1<0【解析】圓SKIPIF1<0:SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,因?yàn)閳ASKIPIF1<0過(guò)圓SKIPIF1<0的圓心,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0:SKIPIF1<0,兩圓的方程相減可得相交弦方程為SKIPIF1<0.故答案為:SKIPIF1<0.例16.已知圓SKIPIF1<0和圓SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0的公共弦的弦長(zhǎng)__________.【答案】SKIPIF1<0【解析】圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,圓SKIPIF1<0的圓心SKIPIF1<0,半徑SKIPIF1<0,所以SKIPIF1<0,滿足兩圓相交有公共弦,兩圓公共弦所在直線方程為兩圓方程作差得:SKIPIF1<0,即SKIPIF1<0,所以圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,則公共弦長(zhǎng)為SKIPIF1<0.故答案為:SKIPIF1<0.例17.過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,設(shè)兩切點(diǎn)分別為A、B,則直線SKIPIF1<0的方程為_(kāi)________.【答案】SKIPIF1<0【解析】根據(jù)題意,過(guò)點(diǎn)SKIPIF1<0作圓SKIPIF1<0的兩條切線,設(shè)兩切點(diǎn)分別為SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0,則以SKIPIF1<0為圓心,SKIPIF1<0為半徑為圓為SKIPIF1<0,即圓SKIPIF1<0,SKIPIF1<0為兩圓的公共弦所在的直線,則有SKIPIF1<0,變形可得:SKIPIF1<0;即直線SKIPIF1<0的方程為SKIPIF1<0,故答案為:SKIPIF1<0題型八:公切線問(wèn)題例18.已知圓SKIPIF1<0與圓SKIPIF1<0恰有兩條公切線,則實(shí)數(shù)SKIPIF1<0的取值范圍________.【答案】SKIPIF1<0【解析】由SKIPIF1<0,即SKIPIF1<0,可知圓SKIPIF1<0的圓心為SKIPIF1<0,半徑為SKIPIF1<0;因?yàn)閳ASKIPIF1<0與圓SKIPIF1<0恰有兩條公切線,所以圓SKIPIF1<0與圓SKIPIF1<0相交,則SKIPIF1<0,∵SKIPIF1<0,解得:SKIPIF1<0,即SKIPIF1<0的取值范圍是SKIPIF1<0.故答案為:SKIPIF1<0.例19.已知圓SKIPIF1<0與圓SKIPIF1<0,則圓SKIPIF1<0與圓SKIPIF1<0的公切線方程是___________________.【答案】SKIPIF1<0【解析】圓SKIPIF1<0,即SKIPIF1<0,圓心為SKIPIF1<0,半徑SKIPIF1<0.圓SKIPIF1<0,即SKIPIF1<0,圓心為SKIPIF1<0,半徑SKIPIF1<0.圓心角SKIPIF1<0,所以?xún)蓤A相內(nèi)切.由SKIPIF1<0解得SKIPIF1<0,所以?xún)蓤A切點(diǎn)的坐標(biāo)為SKIPIF1<0,SKIPIF1<0,所以公切線的斜率為SKIPIF1<0,所以公切線的方程為SKIPIF1<0.故答案為:SKIPIF1<0題型九:圓中范圍與最值問(wèn)題例20.圓SKIPIF1<0上恰好有兩點(diǎn)到直線SKIPIF1<0的距離為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是___________.【答案】SKIPIF1<0【解析】把圓的方程化為標(biāo)準(zhǔn)式為SKIPIF1<0,所以圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0則圓心到直線SKIPIF1<0的距離SKIPIF1<0,由題意得SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0解得:SKIPIF1<0或SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故答案為:SKIPIF1<0.例21.設(shè)圓SKIPIF1<0:SKIPIF1<0上有且僅有兩個(gè)點(diǎn)到直線SKIPIF1<0的距離等于SKIPIF1<0,則圓半徑SKIPIF1<0的取值范圍是_________.【答案】SKIPIF1<0【解析】圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,圓心SKIPIF1<0到直線SKIPIF1<0的距離SKIPIF1<0,因?yàn)閳A上恰有相異兩點(diǎn)到直線SKIPIF1<0的距離等于SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0例22.已知圓SKIPIF1<0:SKIPIF1<0,SKIPIF1<0為圓SKIPIF1<0上任一點(diǎn),則SKIPIF1<0的最大值為_(kāi)_______.【答案】SKIPIF1<0【解析】設(shè)SKIPIF1<0,則SKIPIF1<0,即直線方程為SKIPIF1<0,因?yàn)镾KIPIF1<0為圓SKIPIF1<0上任一點(diǎn),則圓心SKIPIF1<0到直線的距離SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0,故答案為:SKIPIF1<0.題型十:圓系問(wèn)題例23.已知圓SKIPIF1<0:SKIPIF1<0與SKIPIF1<0:SKIPIF1<0相交于A、B兩點(diǎn).(1)求公共弦AB所在的直線方程;(2)求圓心在直線y=-x上,且經(jīng)過(guò)A、B兩點(diǎn)的圓的方程;(3)求經(jīng)過(guò)A、B兩點(diǎn)且面積最小的圓的方程.【解析】(1)將兩圓方程相減得x-2y+4=0,此即為所求直線方程.(2)設(shè)經(jīng)過(guò)A、B兩點(diǎn)的圓的方程為SKIPIF1<0(SKIPIF1<0為常數(shù)),則圓心坐標(biāo)為SKIPIF1<0;又圓心在直線y=-x上,故SKIPIF1<0,解得SKIPIF1<0,故所求方程為SKIPIF1<0.(3)由題意可知以線段AB為直徑的圓面積最?。畠蓤A心所在直線方程為2x+y+3=0,與直線AB方程聯(lián)立得所求圓心坐標(biāo)為SKIPIF1<0,由弦長(zhǎng)公式可知所求圓的半徑為SKIPIF1<0.故面積最小的圓的方程為SKIPIF1<0.【過(guò)關(guān)測(cè)試】一、單選題1.直線SKIPIF1<0被圓SKIPIF1<0截得的弦長(zhǎng)為1,則半徑SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.2 D.SKIPIF1<0【答案】B【解析】圓心SKIPIF1<0到直線SKIPIF1<0的距離為SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,故選:B2.已知圓SKIPIF1<0與圓SKIPIF1<0,求兩圓的公共弦所在的直線方程(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【解析】將兩個(gè)圓的方程相減,得3x-4y+6=0.故選:D.3.已知SKIPIF1<0,圓SKIPIF1<0,圓SKIPIF1<0,若直線SKIPIF1<0過(guò)點(diǎn)SKIPIF1<0且與圓SKIPIF1<0相切,則直線SKIPIF1<0被圓SKIPIF1<0所截得的弦長(zhǎng)為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【解析】設(shè)直線SKIPIF1<0的方程為SKIPIF1<0,由直線與圓SKIPIF1<0相切,則SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0,即直線SKIPIF1<0的方程為SKIPIF1<0,又圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑為SKIPIF1<0,圓SKIPIF1<0圓心到直線距離為SKIPIF1<0,則直線SKIPIF1<0被圓SKIPIF1<0所截弦長(zhǎng)為SKIPIF1<0.故選:A4.若圓SKIPIF1<0與圓SKIPIF1<0外切,則SKIPIF1<0=(

)A.21 B.19 C.9 D.SKIPIF1<0【答案】C【解析】依題意可得圓SKIPIF1<0與圓SKIPIF1<0的圓心分別為SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,且兩圓外切,則SKIPIF1<0,得到SKIPIF1<0,解得SKIPIF1<0.故選:C.5.在平面直角坐標(biāo)系中,SKIPIF1<0為坐標(biāo)原點(diǎn),已知圓SKIPIF1<0的半徑為3,直線SKIPIF1<0,SKIPIF1<0互相垂直,垂足為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),SKIPIF1<0與圓SKIPIF1<0相交于SKIPIF1<0,SKIPIF1<0兩點(diǎn),則四邊形SKIPIF1<0的面積的最大值為(

)A.10 B.12 C.13 D.15【答案】B【解析】設(shè)圓心到直線SKIPIF1<0的距離為SKIPIF1<0,圓心到直線SKIPIF1<0的距離為SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0,SKIPIF1<0互相垂直,垂足為SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:B.二、填空題6.若直線SKIPIF1<0與圓SKIPIF1<0相切,則實(shí)數(shù)SKIPIF1<0_________.【答案】SKIPIF1<0或SKIPIF1<0【解析】圓SKIPIF1<0可化為SKIPIF1<0.因?yàn)橹本€SKIPIF1<0與圓SKIPIF1<0相切,所以圓心到直線的距離等于半徑,即SKIPIF1<0,解得:SKIPIF1<0或7.故答案為:SKIPIF1<0或SKIPIF1<07.已知圓SKIPIF1<0與圓SKIPIF1<0相交,則它們的公共弦所在的直線方程是.【答案】SKIPIF1<0【解析】由題意,SKIPIF1<0圓SKIPIF1<0與圓SKIPIF1<0相交,SKIPIF1<0兩圓的方程作差得SKIPIF1<0,即公式弦所在直線方程為SKIPIF1<0.故答案為:SKIPIF1<0.8.若直線SKIPIF1<0與曲線SKIPIF1<0有且只有一個(gè)公共點(diǎn),則實(shí)數(shù)m的取值范圍是______.【答案】SKIPIF1<0或SKIPIF1<0.【解析】因?yàn)榍€SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,曲線可化為SKIPIF1<0,兩邊同時(shí)平方有:SKIPIF1<0,即SKIPIF1<0,所以曲線SKIPIF1<0是以SKIPIF1<0為圓心,SKIPIF1<0為半徑的圓的一部分,而直線SKIPIF1<0,所以SKIPIF1<0是斜率為1的直線,畫(huà)圖象如下:由于直線與曲線只有一個(gè)公共點(diǎn),當(dāng)直線SKIPIF1<0過(guò)SKIPIF1<0時(shí),即SKIPIF1<0,解得:SKIPIF1<0,當(dāng)直線SKIPIF1<0過(guò)SKIPIF1<0時(shí),即SKIPIF1<0,解得:SKIPIF1<0,由圖象可知SKIPIF1<0,當(dāng)直線SKIPIF1<0與圓相切時(shí):SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,而SKIPIF1<0即為SKIPIF1<0在SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論