2022年江蘇省泰興市黃橋教育聯(lián)盟數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第1頁
2022年江蘇省泰興市黃橋教育聯(lián)盟數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第2頁
2022年江蘇省泰興市黃橋教育聯(lián)盟數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第3頁
2022年江蘇省泰興市黃橋教育聯(lián)盟數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第4頁
2022年江蘇省泰興市黃橋教育聯(lián)盟數(shù)學九年級第一學期期末學業(yè)質量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是()A.若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上B.當k>0時,y隨x的增大而減小C.過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為kD.反比例函數(shù)的圖象關于直線y=﹣x成軸對稱2.如圖,已知直線a∥b∥c,直線m、n與a、b、c分別交于點A、C、E、B、D、F,若AC=8,CE=12,BD=6,則BF的值是()A.14 B.15 C.16 D.173.若2a=3b,則下列比列式正確的是()A. B. C. D.4.下列方程式屬于一元二次方程的是()A. B. C. D.5.如圖,在中,,,,點為上任意一點,連結,以,為鄰邊作平行四邊形,連結,則的最小值為()A. B. C. D.6.如圖,將n個邊長都為2的正方形按如圖所示擺放,點A1、A2、A3,…,An分別是正方形的中心,則這n個正方形重疊的面積之和是()A.n B.n-1C.4n D.4(n-1)7.如圖,AD是的一條角平分線,點E在AD上.若,,則與的面積比為()A.1:5 B.5:1 C.3:20 D.20:38.如圖,⊙C過原點,與x軸、y軸分別交于A、D兩點.已知∠OBA=30°,點D的坐標為(0,2),則⊙C半徑是()A. B. C. D.29.如圖,在△ABC中,DE∥BC,AD=8,DB=4,AE=6,則EC的長為()A.1 B.2 C.3 D.410.中,,,,則的值是()A. B. C. D.11.如圖,在直角坐標系中,矩形OABC的頂點O在坐標原點,邊OA在x軸上,OC在y軸上,且點B的坐標為(6,4),如果矩形OA′B′C′與矩形OABC關于點O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點B′的坐標是()A.(3,2) B.(-2,-3)C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)12.在Rt△ABC中,∠C=90°,AB=5,AC=3,則下列等式正確的是()A.sinA= B.cosA= C.tanA= D.cosA=二、填空題(每題4分,共24分)13.我國經典數(shù)學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,(如圖)題目是:“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適與岸齊,問水深,葭長各幾何?”題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?(小知識:1丈=10尺)如果設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為尺,根據(jù)題意列方程為.14.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,分別以A,B為圓心,以的長為半徑作圓,將Rt△ABC截去兩個扇形,則剩余(陰影)部分的面積為_____.15.如圖,Rt△OAB的頂點A(﹣2,4)在拋物線y=ax2上,將Rt△OAB繞點O順時針旋轉90°,得到△OCD,邊CD與該拋物線交于點P,則點P的坐標為_____.16.如圖,某園林公司承擔了綠化某社區(qū)塊空地的綠化任務,工人工作一段時間后,提高了工作效率.該公司完成的綠化面積(單位:與工作時間(單位:)之間的函數(shù)關系如圖所示,則該公司提高工作效率前每小時完成的綠化面積是____________.17.在中,,則∠C的度數(shù)為____.18.小明家的客廳有一張直徑為1.1米,高0.75米的圓桌BC,在距地面2米的A處有一盞燈,圓桌的影子為DE,依據(jù)題意建立平面直角坐標系,其中點D的坐標為(2,0),則點E的坐標是_________.三、解答題(共78分)19.(8分)如圖1,在正方形ABCD中,點E,F(xiàn)分別是邊BC,AB上的點,且CE=BF,連接DE,過點E作EG⊥DE,使EG=DE,連接FG,F(xiàn)C(1)請判斷:FG與CE的數(shù)量關系是__________,位置關系是__________;(2)如圖2,若點E、F分別是CB、BA延長線上的點,其它條件不變,(1)中結論是否仍然成立?請出判斷判斷并給予證明.20.(8分)(1)解方程(2)計算:21.(8分)如圖,△ABC的高AD、BE相交于點F.求證:.22.(10分)關于x的方程有實數(shù)根,且m為正整數(shù),求m的值及此時方程的根.23.(10分)新建馬路需要在道路兩旁安裝路燈、種植樹苗.如圖,某道路一側路燈AB在兩棵同樣高度的樹苗CE和DF之間,樹苗高2m,兩棵樹苗之間的距離CD為16m,在路燈的照射下,樹苗CE的影長CG為1m,樹苗DF的影長DH為3m,點G、C、B、D、H在一條直線上.求路燈AB的高度.24.(10分)如圖為正方形網格,每個小正方形的邊長均為1,各個小正方形的頂點叫做格點,請在下面的網格中按要求分別畫圖,使得每個圖形的頂點均在格點上.(1)在圖中畫一個以為一邊的菱形,且菱形的面積等于1.(2)在圖中畫一個以為對角線的正方形,并直接寫出正方形的面積.25.(12分)如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象與x軸交于點A(﹣3,0),與y軸交于點B,且與正比例函數(shù)y=x的圖象交點為C(m,4).(1)求一次函數(shù)y=kx+b的解析式;(2)求△BOC的面積;(3)若點D在第二象限,△DAB為等腰直角三角形,則點D的坐標為.26.如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內任取一點D,連結AD(AD<AB),將線段AD繞點A逆時針旋轉90°,得到線段AE,連結DE,CE,BD.(1)請根據(jù)題意補全圖1;(2)猜測BD和CE的數(shù)量關系并證明;(3)作射線BD,CE交于點P,把△ADE繞點A旋轉,當∠EAC=90°,AB=2,AD=1時,補全圖形,直接寫出PB的長.

參考答案一、選擇題(每題4分,共48分)1、D【解析】分析:根據(jù)反比例函數(shù)的性質一一判斷即可;詳解:A.若點(3,6)在其圖象上,則(﹣3,6)不在其圖象上,故本選項不符合題意;B.當k>0時,y隨x的增大而減小,錯誤,應該是當k>0時,在每個象限,y隨x的增大而減?。还时具x項不符合題意;C.錯誤,應該是過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為|k|;故本選項不符合題意;D.正確,本選項符合題意.故選D.點睛:本題考查了反比例函數(shù)的性質,解題的關鍵是熟練掌握反比例函數(shù)的性質,靈活運用所學知識解決問題,屬于中考常考題型.2、B【分析】三條平行線截兩條直線,所得的對應線段成比例.直接根據(jù)平行線分線段成比例定理即可得出結論.【詳解】解:∵a∥b∥c,AC=8,CE=12,BD=6,

∴,即,解得:,故選:B.【點睛】本題考查的是平行線分線段成比例定理,熟知三條平行線截兩條直線,所得的對應線段成比例是解答此題的關鍵.3、C【分析】根據(jù)比例的性質即可得到結論.【詳解】解:∵2a=3b,∴故選:C.【點睛】此題主要考查比例的性質,解題的關鍵是熟知其變形.4、D【解析】根據(jù)一元二次方程的定義逐項進行判斷即可.【詳解】A、是一元三次方程,故不符合題意;B、是分式方程,故不符合題意;C、是二元二次方程,故不符合題意;D、是一元二次方程,符合題意.故選:D.【點睛】本題考查一元二次方程的定義,熟練掌握定義是關鍵.5、A【分析】設PQ與AC交于點O,作⊥于,首先求出,當P與重合時,PQ的值最小,PQ的最小值=2.【詳解】設與AC交于點O,作⊥于,如圖所示:

在Rt△ABC中,∠BAC=90,∠ACB=45,

∴,∵四邊形PAQC是平行四邊形,

∴,∵⊥,∠ACB=45,∴,當與重合時,OP的值最小,則PQ的值最小,

∴PQ的最小值故選:A.【點睛】本題考查了勾股定理的運用、平行四邊形的性質以及垂線段最短的性質,利用垂線段最短求線段的最小值是解題的關鍵.6、B【分析】根據(jù)題意可得,陰影部分的面積是正方形的面積的,已知兩個正方形可得到一個陰影部分,則n個這樣的正方形重疊部分即為(n-1)個陰影部分的和.【詳解】解:如圖示,由分別過點A1、A2、A3,垂直于兩邊的垂線,由圖形的割補可知:一個陰影部分面積等于正方形面積的,即陰影部分的面積是,n個這樣的正方形重疊部分(陰影部分)的面積和為:.故選:B.【點睛】此題考查了正方形的性質,解決本題的關鍵是得到n個這樣的正方形重疊部分(陰影部分)的面積和的計算方法,難點是求得一個陰影部分的面積.7、C【分析】根據(jù)已知條件先求得S△ABE:S△BED=3:2,再根據(jù)三角形相似求得S△ACD=S△ABE=S△BED,根據(jù)S△ABC=S△ABE+S△ACD+S△BED即可求得.【詳解】解:∵AE:ED=3:2,

∴AE:AD=3:5,

∵∠ABE=∠C,∠BAE=∠CAD,

∴△ABE∽△ACD,

∴S△ABE:S△ACD=9:25,

∴S△ACD=S△ABE,

∵AE:ED=3:2,

∴S△ABE:S△BED=3:2,

∴S△ABE=S△BED,

∴S△ACD=S△ABE=S△BED,

∵S△ABC=S△ABE+S△ACD+S△BED=S△BED+S△BED+S△BED=S△BED,

∴S△BDE:S△ABC=3:20,

故選:C.【點睛】本題考查了相似三角形的判定和性質,不同底等高的三角形面積的求法等,等量代換是本題的關鍵.8、B【解析】連接AD∵∠AOD=90°,∴AD是圓的直徑.在直角三角形AOD中,∠D=∠B=30°,OD=2,∴AD=,則圓的半徑是.故選B.點睛:連接AD.根據(jù)90°的圓周角所對的弦是直徑,得AD是直徑,根據(jù)等弧所對的圓周角相等,得∠D=∠B=30°,運用解直角三角形的知識即可求解.9、C【分析】根據(jù)平行線所截的直線形成的線段的比例關系,可得,代數(shù)解答即可.【詳解】解:由題意得,,,解得.【點睛】本題考查了平行線截取直線所得的對應線段的比例關系,理解掌握該比例關系列出比例式是解答關鍵.10、D【分析】根據(jù)勾股定理求出BC的長度,再根據(jù)cos函數(shù)的定義求解,即可得出答案.【詳解】∵AC=,AB=4,∠C=90°∴∴故答案選擇D.【點睛】本題考查的是勾股定理和三角函數(shù),比較簡單,需要熟練掌握sin函數(shù)、cos函數(shù)和tan函數(shù)分別代表的意思.11、D【分析】利用位似圖形的性質得出位似比,進而得出對應點的坐標.【詳解】解:∵矩形OA′B′C′的面積等于矩形OABC面積的,

∴兩矩形面積的相似比為:1:2,

∵B的坐標是(6,4),∴點B′的坐標是:(3,2)或(-3,-2).

故選:D.【點睛】此題主要考查了位似變換的性質,得出位似圖形對應點坐標性質是解題關鍵.12、B【分析】利用勾股數(shù)求出BC=4,根據(jù)銳角三角函數(shù)的定義,分別計算∠A的三角函數(shù)值即可.【詳解】解:如圖所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sinA=,故A錯誤;cosA=,故B正確;tanA=,故C錯誤;cosA=,故D錯誤;故選:B.【點睛】本題考查了銳角三角函數(shù)的定義,勾股數(shù)的應用,掌握銳角三角函數(shù)的定義是解題的關鍵.二、填空題(每題4分,共24分)13、(x+1);.【解析】試題分析:設水深為x尺,則蘆葦長用含x的代數(shù)式可表示為(x+1)尺,根據(jù)題意列方程為.故答案為(x+1),.考點:由實際問題抽象出一元二次方程;勾股定理的應用.14、6﹣π【分析】利用勾股定理得出AB的長,再利用圖中陰影部分的面積是:S△ABC﹣S扇形面積求出即可.【詳解】解:∵Rt△ABC中,∠ABC=90°,AC=4,BC=3,∴AB==5,∴S陰影部分=×3×4﹣=6﹣π.故答案是:6﹣π.【點睛】此題主要考查不規(guī)則圖形的面積求解,解題的關鍵是熟知割補法的應用.15、(,2).【解析】由題意得:,即點P的坐標.16、【分析】利用待定系數(shù)法求出提高效率后與的函數(shù)解析式,由此可得時,的值,然后即可得出答案.【詳解】由題意,可設提高效率后得與的函數(shù)解析式為將和代入得解得因此,與的函數(shù)解析式為當時,則該公司提高工作效率前每小時完成的綠化面積故答案為:100.【點睛】本題考查了一次函數(shù)的實際應用,依據(jù)圖象,利用待定系數(shù)法求出函數(shù)解析式是解題關鍵.17、【分析】先根據(jù)平方、絕對值的非負性求得、,再利用銳角三角函數(shù)確定、的度數(shù),最后根據(jù)直角三角形內角和求得.【詳解】解:∵∴∴∴∴.故答案是:【點睛】本題考查了平方、絕對值的非負性,銳角三角函數(shù)以及三角形內角和,熟悉各知識點是解題的關鍵.18、(3.76,0)【分析】根據(jù)相似三角形的判定和性質即可得到結論.【詳解】解:∵BC∥DE,∴△ABC∽△ADE,∴,∵BC=1.1,∴DE=3.76,∴E(3.76,0).故答案為:(3.76,0).【點睛】本題考查了中心投影,相似三角形的判定和性質,正確的識別圖形是解題的關鍵.三、解答題(共78分)19、(1)FG=CE,F(xiàn)G∥CE;(2)成立,理由見解析.【解析】(1)結論:FG=CE,F(xiàn)G∥CE,如圖1中,設DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可;(2)結論仍然成立,如圖2中,設DE與CF交于點M,首先證明△CBF≌△DCE,推出DE⊥CF,再證明四邊形EGFC是平行四邊形即可.【詳解】(1)結論:FG=CE,F(xiàn)G∥CE.理由:如圖1中,設DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.故答案為FG=CE,F(xiàn)G∥CE;(2)結論仍然成立.理由:如圖2中,設DE與CF交于點M,∵四邊形ABCD是正方形,∴BC=CD,∠ABC=∠DCE=90°,在△CBF和△DCE中,,∴△CBF≌△DCE,∴∠BCF=∠CDE,CF=DE,∵∠BCF+∠DCM=90°,∴∠CDE+∠DCM=90°,∴∠CMD=90°,∴CF⊥DE,∵GE⊥DE,∴EG∥CF,∵EG=DE,CF=DE,∴EG=CF,∴四邊形EGFC是平行四邊形.∴GF=EC,∴GF=EC,GF∥EC.【點睛】本題三角形與四邊形綜合問題,涉及全等三角形的判定與性質,正方形的性質,平行四邊形的判定與性質,熟練掌握全等三角形的性質是解題的關鍵.20、(1),;(2)【分析】(1)利用配方法解一元二次方程即可得出答案;(2)先將sin45°和tan60°的值代入,再計算即可得出答案.【詳解】解:(1)方程整理得:,配方得:,即,開方得:,解得:,;(2)原式.【點睛】本題考查的是解一元二次方程和三角函數(shù)值,比較簡單,需要牢記特殊三角函數(shù)值.21、見解析【分析】由題意可證△AEF∽△BDF,可得,即可得.【詳解】解:證明:∵AD,BE是△ABC的高,

∴∠ADB=∠AEF=90°,且∠AFE=∠BFD,∴△AEF∽△BDF,∴,

∴.【點睛】本題考查了相似三角形的判定與性質,熟練運用相似三角形的性質是本題的關鍵.22、,此時方程的根為【分析】直接利用根的判別式≥0得出m的取值范圍進而解方程得出答案.【詳解】解:∵關于x的方程x2-2x+2m-1=0有實數(shù)根,

∴b2-4ac=4-4(2m-1)≥0,

解得:m≤1,

∵m為正整數(shù),

∴m=1,

∴此時二次方程為:x2-2x+1=0,

則(x-1)2=0,

解得:x1=x2=1.【點睛】此題主要考查了根的判別式,正確得出m的值是解題關鍵.23、10m【分析】設BC的長度為x,根據(jù)題意得出△GCE∽△GBA,△HDF∽△HBA,進而利用相似三角形的性質列出關于x的方程.【詳解】解:設BC的長度為xm由題意可知CE∥AB∥DF∵CE∥AB∴△GCE∽△GBA,△HDF∽△HBA∴,即==,即=∴=∴x=4∴AB=10答:路燈AB的高度為10m.【點睛】此題主要考查了相似三角形的應用,得出△GCE∽△GBA,△HDF∽△HBA是解題關鍵.24、(1)圖見解析;(2)圖見解析,2.【分析】(1)根據(jù)菱形面積公式可得,底邊AB的高為4,結合AD=5即可得到點D的坐標,同理得到點C的坐標,連接A,C,D即可.(2)作線段EF的中線與網格交于G、H,且,依次連接E、G、F、H即可,利用正方形面積公式即可求得正方形的面積.【詳解】解:(1)根據(jù)菱形面積公式可得,底邊AB的高為4,結合AD=5即可得到點D的坐標,同理得到點C的坐標,連接A,C,D.如圖所示.(2)作線段EF的中線與網格交于G、H,且,依次連接E、G、F、H即可,如圖所示.正方形面積為2.【點睛】本題考查了網格作圖的問題,掌握菱形的性質以及面積公式、正方形的性質以及面積公式、勾股定理是解題的關鍵.25、(1)y=x+2;(2)3;(3)(﹣2,5)或(﹣5,3)或(,).【分析】(1)把C點坐標代入正比例函數(shù)解析式可求得m,再把A、C坐標代入一次函數(shù)解析式可求得k、b,可求得答案;(2)先求出點B的坐標,然后根據(jù)三角形的面積公式即可得到結論;(3)由題意可分AB為直角邊和AB為斜邊兩種情況,當AB為直角邊時,再分A為直角頂點和B為直角頂點兩種情況,此時分別設對應的D點為D2和D1,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,可證明△BED1≌△AOB(AAS),可求得D1的坐標,同理可求得D2的坐標,AD1與BD2的交點D3就是AB為斜邊時的直角頂點,據(jù)此即可得出D點的坐標.【詳解】(1)∵點C(m,4)在正比例函數(shù)y=x的圖象上,∴m=4,解得:m=3,∴C(3,4),∵點C(3,4)、A(﹣3,0)在一次函數(shù)y=kx+b的圖象上,∴,解得,∴一次函數(shù)的解析式為y=x+2;(2)在y=x+2中,令x=0,解得y=2,∴B(0,2),∴S△BOC=×2×3=3;(3)分AB為直角邊和AB為斜邊兩種情況,當AB為直角邊時,分A為直角頂點和B為直角頂點兩種情況,如圖,過點D1作D1E⊥y軸于點E,過點D2作D2F⊥x軸于點F,∵點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,∴AB=BD1,∵∠D1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論