2022年深圳市錦華實驗學校數(shù)學九上期末綜合測試試題含解析_第1頁
2022年深圳市錦華實驗學校數(shù)學九上期末綜合測試試題含解析_第2頁
2022年深圳市錦華實驗學校數(shù)學九上期末綜合測試試題含解析_第3頁
2022年深圳市錦華實驗學校數(shù)學九上期末綜合測試試題含解析_第4頁
2022年深圳市錦華實驗學校數(shù)學九上期末綜合測試試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年九上數(shù)學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.已知點(x1,y1)、(x2,y2)、(x3,y3)在反比例函數(shù)y=-的圖象上,當x1<x2<0<x3時,y1,y2,y3的大小關系是()A.y1<y3<y2 B.y2<y1<y3 C.y3<y1<y2 D.y3<y2<y12.如圖,正方形的頂點分別在軸和軸上,與雙曲線恰好交于的中點.若,則的值為()A.6 B.8 C.10 D.123.下列事件中,屬于隨機事件的是().A.13名同學中至少有兩名同學的生日在同一個月B.在只有白球的盒子里摸到黑球C.經(jīng)過交通信號燈的路口遇到紅燈D.用長為,,的三條線段能圍成一個邊長分別為,,的三角形4.在△ABC與△DEF中,,,如果∠B=50°,那么∠E的度數(shù)是().A.50°; B.60°;C.70°; D.80°.5.已知反比例函數(shù)y=2x﹣1,下列結論中,不正確的是()A.點(﹣2,﹣1)在它的圖象上B.y隨x的增大而減小C.圖象在第一、三象限D.若x<0時,y隨x的增大而減小6.將一元二次方程配方后所得的方程是()A. B.C. D.7.二次函數(shù)y=a(x﹣m)2﹣n的圖象如圖,則一次函數(shù)y=mx+n的圖象經(jīng)過()A.第一、二、三象限 B.第一、二、四象限C.第二、三、四象限 D.第一、三、四象限8.如圖,在平面直角坐標系中,菱形ABCD的頂點A(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上,若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為()A.15 B.20 C.25 D.309.已知y=(m+2)x|m|+2是關于x的二次函數(shù),那么m的值為()A.﹣2 B.2 C.±2 D.010.如圖,點O為△ABC的外心,點I為△ABC的內心,若∠BOC=140°,則∠BIC的度數(shù)為()A.110° B.125° C.130° D.140°11.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.20° C.15° D.30°12.函數(shù)與,在同一坐標系中的圖象可能是()A.B.C.D.二、填空題(每題4分,共24分)13.一元二次方程有一個根為,二次項系數(shù)為1,且一次項系數(shù)和常數(shù)項都是非0的有理數(shù),這個方程可以是_________.14.正五邊形的中心角的度數(shù)是_____.15.反比例函數(shù)y=的圖象在第一、三象限,則m的取值范圍是_______.16.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.17.如圖,矩形中,邊長,兩條對角線相交所成的銳角為,是邊的中點,是對角線上的一個動點,則的最小值是_______.18.如圖示一些小正方體木塊所搭的幾何體,從正面和從左面看到的圖形,則搭建該幾何體最多需要塊正方體木塊.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系xOy中,直線y=x+2與x軸交于點A,與y軸交于點C,拋物線y=ax2+bx+c的對稱軸是x=且經(jīng)過A,C兩點,與x軸的另一交點為點B.(1)求拋物線解析式.(2)拋物線上是否存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似?若存在,求出點M的坐標;若不存在,請說明理由.20.(8分)如圖,點P在y軸上,⊙P交x軸于A,B兩點,連接BP并延長交⊙P于點C,過點C的直線y=2x+b交x軸于點D,且⊙P的半徑為,AB=4.(1)求點B,P,C的坐標;(2)求證:CD是⊙P的切線.21.(8分)如圖,△ABC是⊙O的內接三角形,AB是⊙O的直徑,∠CAD=∠ABC.判斷直線AD與⊙O的位置關系,并說明理由.22.(10分)在Rt△ABC中,∠ACB=90°,AC=1,記∠ABC=α,點D為射線BC上的動點,連接AD,將射線DA繞點D順時針旋轉α角后得到射線DE,過點A作AD的垂線,與射線DE交于點P,點B關于點D的對稱點為Q,連接PQ.(1)當△ABD為等邊三角形時,①依題意補全圖1;②PQ的長為;(2)如圖2,當α=45°,且BD=時,求證:PD=PQ;(3)設BC=t,當PD=PQ時,直接寫出BD的長.(用含t的代數(shù)式表示)23.(10分)如圖,兩個班的學生分別在C、D兩處參加植樹勞動,現(xiàn)要在道路AO、OB的交叉區(qū)域內(∠AOB的內部)設一個茶水供應點M,M到兩條道路的距離相等,且MC=MD,這個茶水供應點的位置應建在何處?請說明理由.(保留作圖痕跡,不寫作法)24.(10分)2019年九龍口詩詞大會在九龍口鎮(zhèn)召開,我校九年級選拔了3名男生和2名女生參加某分會場的志愿者工作.本次學生志愿者工作一共設置了三個崗位,分別是引導員、聯(lián)絡員和咨詢員.(1)若要從這5名志愿者中隨機選取一位作為引導員,求選到女生的概率;(2)若甲、乙兩位志愿者都從三個崗位中隨機選擇一個,請你用畫樹狀圖或列表法求出他們恰好選擇同一個崗位的概率.(畫樹狀圖和列表時可用字母代替崗位名稱)25.(12分)如圖,Rt△ABC中,∠BAC=90°,AB=2,AC=4,D是BC邊上一點,且BD=CD,G是BC邊上的一動點,GE∥AD分別交直線AC,AB于F,E兩點.(1)AD=;(2)如圖1,當GF=1時,求的值;(3)如圖2,隨點G位置的改變,F(xiàn)G+EG是否為一個定值?如果是,求出這個定值,如果不是,請說明理由.26.先化簡,再求值:,其中.

參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)反比例函數(shù)為y=-,可得函數(shù)圖象在第二、四象限,在每個象限內,y隨著x的增大而增大,進而得到y(tǒng)1,y2,y3的大小關系.【詳解】解:∵反比例函數(shù)為y=-,∴函數(shù)圖象在第二、四象限,在每個象限內,y隨著x的增大而增大,又∵x1<x2<0<x3,∴y1>0,y2>0,y3<0,且y1<y2,∴y3<y1<y2,故選:C.【點睛】本題主要考查反比例函數(shù)圖象上的點的坐標特征,解答本題的關鍵是明確題意,利用反比例函數(shù)的性質解答.2、D【分析】作EH⊥x軸于點H,EG⊥y軸于點G,根據(jù)“OB=2OA”分別設出OB和OA的長度,利用矩形的性質得出△EBG∽△BAO,再根據(jù)相似比得出BG和EG的長度,進而寫出點E的坐標代入反比例函數(shù)的解析式,即可得出答案.【詳解】作EH⊥x軸于點H,EG⊥y軸于點G設AO=a,則OB=2OA=2a∵ABCD為正方形∴∠ABC=90°,AB=BC∵EG⊥y軸于點G∴∠EGB=90°∴∠EGB=∠BOA=90°∠EBG+∠BEG=90°∴∠BEG=∠ABO∴△EBG∽△BAO∴∵E是BC的中點∴∴∴BG=,EG=a∴OG=BO-BG=∴點E的坐標為∵E在反比例函數(shù)上面∴解得:∴AO=,BO=故答案選擇D.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,難度系數(shù)較高,解題關鍵是根據(jù)題意求出點E的坐標.3、C【分析】根據(jù)隨機事件,必然事件,不可能事件的定義對每一選項進行判斷即可.【詳解】A、必然事件,不符合題意;B、不可能事件,不符合題意;C、隨機事件,符合題意;D、不可能事件,不符合題意;故選C.【點睛】本題考查隨機事件,正確理解隨機事件,必然事件,不可能事件的定義是解題的關鍵.4、C【分析】根據(jù)已知可以確定;根據(jù)對應角相等的性質即可求得的大小,即可解題.【詳解】解:∵,,∴與是對應角,與是對應角,故.故選:C.【點睛】本題考查了相似三角形的判定及性質,本題中得出和是對應角是解題的關鍵.5、B【分析】由反比例函數(shù)的關系式,可以判斷出(-2,-1)在函數(shù)的圖象上,圖象位于一、三象限,在每個象限內y隨x的增大而減小,進而作出判斷,得到答案.【詳解】A、把(﹣2,﹣1)代入y=2x﹣1得:左邊=右邊,故本選項正確,不符合題意;B、k=2>0,在每個象限內,y隨x的增大而減小,故本選項錯誤,符合題意;C、k=2>0,圖象在第一、三象限,故本選項正確,不符合題意;D、若x<0時,圖象在第三象限內,y隨x的增大而減小,故本選項正確,不符合題意;不正確的只有選項B,故選:B.【點睛】考查反比例函數(shù)的圖象和性質,特別注意反比例函數(shù)的增減性,當k>0,在每個象限內,y隨x的增大而減??;當k<0,在每個象限內,y隨x的增大而增大.6、B【分析】嚴格按照配方法的一般步驟即可得到結果.【詳解】∵,∴,∴,故選B.【點睛】解答本題的關鍵是掌握配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.選擇用配方法解一元二次方程時,最好使方程的二次項的系數(shù)為1,一次項的系數(shù)是2的倍數(shù).7、A【解析】由拋物線的頂點坐標在第四象限可得出m>0,n>0,再利用一次函數(shù)圖象與系數(shù)的關系,即可得出一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.【詳解】解:觀察函數(shù)圖象,可知:m>0,n>0,∴一次函數(shù)y=mx+n的圖象經(jīng)過第一、二、三象限.故選A.【點睛】本題考查了二次函數(shù)的圖象以及一次函數(shù)圖象與系數(shù)的關系,牢記“k>0,b>0?y=kx+b的圖象在一、二、三象限”是解題的關鍵.8、B【分析】根據(jù)拋物線的解析式結合拋物線過點B、C,即可得出點C的橫坐標,由菱形的性質可得出AD=AB=BC=1,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.【詳解】解:拋物線的對稱軸為,∵拋物線y=-x2-1x+c經(jīng)過點B、C,且點B在y軸上,BC∥x軸,

∴點C的橫坐標為-1.

∵四邊形ABCD為菱形,

∴AB=BC=AD=1,

∴點D的坐標為(-2,0),OA=2.

在Rt△ABC中,AB=1,OA=2,∴OB=,∴S菱形ABCD=AD?OB=1×4=3.

故選:B.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征、二次函數(shù)的性質、菱形的性質以及平行四邊形的面積,根據(jù)二次函數(shù)的性質、菱形的性質結合勾股定理求出AD=1、OB=4是解題的關鍵.9、B【解析】試題解析:是關于的二次函數(shù),解得:故選B.10、B【解析】解:∵點O為△ABC的外心,∠BOC=140°,∴∠A=70°,∴∠ABC+∠ACB=110°,∵點I為△ABC的內心,∴∠IBC+∠ICB=55°,∴∠BIC=125°.故選B.11、A【分析】根據(jù)圓周角定理可得∠BAC=25°,又由AC∥OB,∠BAC=∠B=25°,再由等邊對等角即可求解答.【詳解】解:∵∠BOC=2∠BAC,∠BOC=50°,∴∠BAC=25°,又∵AC∥OB∴∠BAC=∠B=25°∵.OA=OB∴∠OAB=∠B=25°故答案為A.【點睛】本題考查了圓周角定理和平行線的性質,靈活應用所學定理以及數(shù)形結合思想的應用都是解答本題的關鍵.12、D【解析】由二次函數(shù)y=ax2+a中一次項系數(shù)為0,我們易得函數(shù)y=ax2+a的圖象關于y軸對稱,然后分當a>0時和a<0時兩種情況,討論函數(shù)y=ax2+a的圖象與函數(shù)y=(a≠0)的圖象位置、形狀、頂點位置,可用排除法進行解答.【詳解】解:由函數(shù)y=ax2+a中一次項系數(shù)為0,

我們易得函數(shù)y=ax2+a的圖象關于y軸對稱,可排除A;

當a>0時,函數(shù)y=ax2+a的圖象開口方向朝上,頂點(0,a)點在x軸上方,可排除C;

當a<0時,函數(shù)y=ax2+a的圖象開口方向朝下,頂點(0,a)點在x軸下方,

函數(shù)y=(a≠0)的圖象位于第二、四象限,可排除B;

故選:D.【點睛】本題考查的知識點是函數(shù)的表示方法-圖象法,熟練掌握二次函數(shù)及反比例函數(shù)圖象形狀與系數(shù)的關系是解答本題的關鍵.二、填空題(每題4分,共24分)13、【分析】根據(jù)有理系數(shù)一元二次方程若有一根為,則必有另一根為求解即可.【詳解】根據(jù)題意,方程的另一個根為,∴這個方程可以是:,即:,故答案是:,【點睛】本題考查了一元二次方程根與系數(shù)的關系,正確理解“有理系數(shù)一元二次方程若有一根為,則必有另一根為”是解題的關鍵.14、72°.【分析】根據(jù)正多邊形的圓心角定義可知:正n邊形的圓中心角為,則代入求解即可.【詳解】解:正五邊形的中心角為:.故答案為72°.【點睛】此題考查了正多邊形的中心角的知識.題目比較簡單,注意熟記定義.15、m>1【分析】由于反比例函數(shù)y=的圖象在一、三象限內,則m-1>0,解得m的取值范圍即可.【詳解】解:由題意得,反比例函數(shù)y=的圖象在一、三象限內,則m-1>0,解得m>1.故答案為m>1.【點睛】本題考查了反比例函數(shù)的性質,解題的關鍵是熟練的掌握反比例函數(shù)的性質.16、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.17、【分析】根據(jù)對稱性,作點B關于AC的對稱點B′,連接B′M與AC的交點即為所求作的點P,再求直角三角形中30的臨邊即可.【詳解】如圖,作點B關于AC的對稱點B′,連接B′M,交AC于點P,∴PB′=PB,此時PB+PM最小,∵矩形ABCD中,兩條對角線相交所成的銳角為60,∴△ABP是等邊三角形,∴∠ABP=60,∴∠B′=∠B′BP=30,∵∠DBC=30,∴∠BMB′=90,在Rt△BB′M中,BM=4,∠B′=30°,∴BB’=2BM=8∴B′M=,∴PM+PB′=PM+PB=B′M=4.故答案為4.【點睛】本題主要考查了最短路線問題,解決本題的關鍵是作點B關于AC的對稱點B′.18、16【解析】根據(jù)俯視圖標數(shù)法可得,最多有1塊;故答案是1.點睛:三視圖是指一個立體圖形從上面、正面、側面(一般為左側)三個方向看到的圖形,首先我們要分清三個概念:排、列、層,比較好理解,就像我們教室的座位一樣,橫著的為排,豎著的為列,上下的為層,如圖所示的立體圖形,共有兩排、三列、兩層.仔細觀察三視圖,可以發(fā)現(xiàn)在每一圖中,并不能同時看到排、列、層,比如正視圖看不到排,這個很好理解,比如在教室里,如果第一排的同學個子非常高,那么后面的同學都被擋住了,我們無法從正面看到后面的同學,也就無法確定有幾排.所以,我們可以知道正視圖可看到列和層,俯視圖可看到排和層列,側視圖可看到排和層.三、解答題(共78分)19、(1)拋物線的解析式為;(2)拋物線存在點M,點M的坐標或或或【分析】(1)根據(jù)自變量與函數(shù)值的對應關系,可得A、C點坐標,根據(jù)函數(shù)值相等的兩點關于對稱軸對稱,可得B點坐標,根據(jù)待定系數(shù)法,可得函數(shù)解析式;(2)分兩種情形分別求解即可解決問題;【詳解】解:(1)當x=0時,y=2,即C(0,2),當y=0時,x+2=0,解得x=﹣4,即A(﹣4,0).由A、B關于對稱軸對稱,得B(1,0).將A、B、C點坐標代入函數(shù)解析式,得,解得,拋物線的解析式為y=﹣x2﹣x+2;(2)①當點M在x軸上方時,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,如圖,設M(m,﹣x2﹣x+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2,由勾股定理,得AC=,BC=,∵AC2+BC2=AB2,∴∠ACB=90°,當△ANM∽△ACB時,∠CAB=∠MAN,此時點M與點C重合,M(0,2).當△ANM∽△BCA時,∠MAN=∠ABC,此時M與C關于拋物線的對稱軸對稱,M(﹣3,2).②當點M在x軸下方時,當△ANM∽△ACB時,∠CAB=∠MAN,此時直線AM的解析式為y=﹣x﹣2,由,解得或,∴M(2,﹣3),當△ANM′∽△BCA時,∠MAN=∠ABC,此時AM′∥BC,∴直線AM′的解析式為y=﹣2x﹣8,由,解得或,∴M(5,﹣18)綜上所述:拋物線存在點M,過點M作MN垂直x軸于點N,使得以點A、M、N為頂點的三角形與△ABC相似,點M的坐標(﹣3,2)或(0,2)或(2,﹣3)或(5,﹣18).【點睛】本題主要考查了二次函數(shù)的綜合,準確計算是解題的關鍵.20、(1)C(-2,2);(2)證明見解析.【解析】試題分析:(1)Rt△OBP中,由勾股定理得到OP的長,連接AC,因為BC是直徑,所以∠BAC=90°,因為OP是△ABC的中位線,所以OA=2,AC=2,即可求解;(2)由點C的坐標可得直線CD的解析式,則可求點D的坐標,從而可用SAS證△DAC≌△POB,進而證∠ACB=90°.試題解析:(1)解:如圖,連接CA.∵OP⊥AB,∴OB=OA=2.∵OP2+BO2=BP2,∴OP2=5-4=1,OP=1.∵BC是⊙P的直徑,∴∠CAB=90°.∵CP=BP,OB=OA,∴AC=2OP=2.∴B(2,0),P(0,1),C(-2,2).(2)證明:∵直線y=2x+b過C點,∴b=6.∴y=2x+6.∵當y=0時,x=-3,∴D(-3,0).∴AD=1.∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,∴△DAC≌△POB.∴∠DCA=∠ABC.∵∠ACB+∠CBA=90°,∴∠DCA+∠ACB=90°,即CD⊥BC.∴CD是⊙P的切線.21、直線AD與⊙O相切,理由見解析【分析】先由AB是⊙O的直徑可得∠ACB=90°,進而得出∠ABC+∠BAC=90°;接下來再由∠CAD=∠ABC,運用等量代換可得∠CAD+∠BAC=90°,再運用切線的判定即可求解.【詳解】直線AD與⊙O相切.∵AB是⊙O的直徑,∴∠ACB=90°.∴∠ABC+∠BAC=90°.又∵∠CAD=∠ABC,∴∠CAD+∠BAC=90°.∴直線AD與⊙O相切【點睛】本題考查了圓周角定理,直線與圓的位置關系.半圓(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑;經(jīng)過半徑外端點并且垂直于這條半徑的直線是圓的切線.22、(1)①詳見解析;②1;(1)詳見解析;(3)BD=.【分析】(1)①根據(jù)題意畫出圖形即可.②解直角三角形求出PA,再利用全等三角形的性質證明PQ=PA即可.(1)作PF⊥BQ于F,AH⊥PF于H.通過計算證明DF=FQ即可解決問題.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,,利用相似三角形的性質構建方程求解即可解決問題.【詳解】(1)解:①補全圖形如圖所示:②∵△ABD是等邊三角形,AC⊥BD,AC=1∴∠ADC=60°,∠ACD=90°∴∵∠ADP=∠ADB=60°,∠PAD=90°∴PA=AD?tan60°=1∵∠ADP=∠PDQ=60°,DP=DP.DA=DB=DQ∴△PDA≌△PDQ(SAS)∴PQ=PA=1.(1)作PF⊥BQ于F,AH⊥PF于H,如圖:∵PA⊥AD,∴∠PAD=90°由題意可知∠ADP=45°∴∠APD=90°﹣45°=45°=∠ADP∴PA=PD∵∠ACB=90°∴∠ACD=90°∵AH⊥PF,PF⊥BQ∴∠AHF=∠HFC=∠ACF=90°∴四邊形ACFH是矩形∴∠CAH=90°,AH=CF∵∠ACH=∠DAP=90°∴∠CAD=∠PAH又∵∠ACD=∠AHP=90°∴△ACD≌△AHP(AAS)∴AH=AC=1∴CF=AH=1∵,BC=1,B,Q關于點D對稱∴,∴∴F為DQ中點∴PF垂直平分DQ∴PQ=PD.(3)如圖3中,作PF⊥BQ于F,AH⊥PF于H.設BD=x,則CD=x﹣t,∵PD=PQ,PF⊥DQ∴∵四邊形AHFC是矩形∴∵△ACB∽△PAD∴∴∴∵△PAH∽△DAC∴∴解得∴.故答案是:(1)①詳見解析;②1;(1)詳見解析;(3).【點睛】本題是三角形綜合題目,主要考查了三角形的旋轉、等邊三角形的性質、銳角三角函數(shù)、勾股定理、全等三角形的判定和性質、矩形的判定和性質,構造全等三角形、相似三角形、直角三角形是解題的關鍵.23、作圖見解析,理由見解析.【分析】因為M到兩條道路的距離相等,且使MC=MD,所以M應是∠O的平分線和CD的垂直平分線的交點.【詳解】如圖,∠O的平分線和CD的垂直平分線的交點即為茶水供應點的位置.理由是:因為M是∠O的平分線和CD的垂直平分線的交點,所以M到∠O的兩邊OA和OB的距離相等,M到C、D的距離相等,所以M就是所求.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論