版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省南通市啟東市東安中學(xué)2025屆數(shù)學(xué)九上期末質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知線段MN=4cm,P是線段MN的黃金分割點,MP>NP,那么線段MP的長度等于()A.(2+2)cm B.(2﹣2)cm C.(+1)cm D.(﹣1)cm2.函數(shù)y=與y=kx2﹣k(k≠0)在同一直角坐標系中的圖象可能是()A. B.C. D.3.如下是一種電子記分牌呈現(xiàn)的數(shù)字圖形,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.4.如圖,已知矩形的面積是,它的對角線與雙曲線圖象交于點,且,則值是()A. B. C. D.5.下列四個數(shù)中是負數(shù)的是()A.1 B.﹣(﹣1) C.﹣1 D.|﹣1|6.如圖,有一圓錐形糧堆,其側(cè)面展開圖是半徑為6m的半圓,糧堆母線AC的中點P處有一老鼠正在偷吃糧食,此時,小貓正在B處,它要沿圓錐側(cè)面到達P處捕捉老鼠,則小貓所經(jīng)過的最短路程長為()A.3m B.m C.m D.4m7.拋物線與y軸的交點為()A. B. C. D.8.關(guān)于x的一元二次方程x2﹣3x+m=0有兩個不相等的實數(shù)根,則實數(shù)m的取值范圍為()A.m≥ B.m< C.m= D.m<﹣9.下列函數(shù)中,變量是的反比例函數(shù)是()A. B. C. D.10.如圖,在平行四邊形中,點是邊上一點,且,交對角線于點,則等于()A. B. C. D.11.圓錐的底面直徑為30cm,母線長為50cm,那么這個圓錐的側(cè)面展開圖的圓心角為()A.108° B.120° C.135° D.216°12.一元二次方程x2﹣4x+5=0的根的情況是()A.沒有實數(shù)根 B.只有一個實數(shù)根C.有兩個相等的實數(shù)根 D.有兩個不相等的實數(shù)根二、填空題(每題4分,共24分)13.如圖,為測量某河的寬度,在河對岸邊選定一個目標點A,在近岸取點B,C,D,使得AB⊥BC,CD⊥BC,點E在BC上,并且點A,E,D在同一條直線上.若測得BE=10m,EC=5m,CD=8m,則河的寬度AB長為______________m.14.已知線段a=4,b=9,則a,b的比例中項線段長等于________.15.不透明布袋里有5個紅球,4個白球,往布袋里再放入x個紅球,y個白球,若從布袋里摸出白球的概率為,則y與x之間的關(guān)系式是_____.16.如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.17.不等式組的解集為__________.18.扇形的弧長為10πcm,面積為120πcm2,則扇形的半徑為_____cm.三、解答題(共78分)19.(8分)如圖,點在以為直徑的上,的平分線交于點,過點作的平行線交的延長線于點.(1)求證:是的切線;(2)若,,求的長度.20.(8分)已知關(guān)于的一元二次方程的兩實數(shù)根,滿足,求的取值范圍.21.(8分)在一個不透明的盒子里裝有4個分別標有:﹣1、﹣2、0、1的小球,它們的形狀、大小完全相同,小芳從盒子中隨機取出一個小球,記下數(shù)字為x,作為點M的橫坐標:小華在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,作為點M的縱坐標.(1)用畫樹狀圖或列表的方式,寫出點M所有可能的坐標;(2)求點M(x,y)在函數(shù)y=的圖象上的概率.22.(10分)如圖,是半徑為1的的內(nèi)接正十邊形,平分(1)求證:;(2)求證:23.(10分)直線與雙曲線只有一個交點,且與軸、軸分別交于、兩點,AD垂直平分,交軸于點.(1)求直線、雙曲線的解析式;(2)過點作軸的垂線交雙曲線于點,求的面積.24.(10分)已知:如圖,點P是一個反比例函數(shù)的圖象與正比例函數(shù)y=﹣2x的圖象的公共點,PQ垂直于x軸,垂足Q的坐標為(2,0).(1)求這個反比例函數(shù)的解析式;(2)如果點M在這個反比例函數(shù)的圖象上,且△MPQ的面積為6,求點M的坐標.25.(12分)如圖,在△ABC中,點D在邊AB上,DE∥BC,DF∥AC,DE、DF分別交邊AC、BC于點E、F,且.(1)求的值;(2)聯(lián)結(jié)EF,設(shè)=,=,用含、的式子表示.26.如圖,同學(xué)們利用所學(xué)知識去測量海平面上一個浮標到海岸線的距離.在一筆直的海岸線l上有A、B兩個觀測站,A在B的正東方向,小宇同學(xué)在A處觀測得浮標在北偏西60°的方向,小英同學(xué)在距點A處60米遠的B點測得浮標在北偏西45°的方向,求浮標C到海岸線l的距離(結(jié)果精確到0.01m).
參考答案一、選擇題(每題4分,共48分)1、B【解析】根據(jù)黃金分割的定義進行作答.【詳解】由黃金分割的定義知,,又MN=4,所以,MP=22.所以答案選B.【點睛】本題考查了黃金分割的定義,熟練掌握黃金分割的定義是本題解題關(guān)鍵.2、D【分析】根據(jù)k>0,k<0,結(jié)合兩個函數(shù)的圖象及其性質(zhì)分類討論,然后再對照選項即可.【詳解】解:分兩種情況討論:①當k<0時,反比例函數(shù)y=在二、四象限,而二次函數(shù)y=kx2﹣k開口向下,故A、B、C、D都不符合題意;②當k>0時,反比例函數(shù)y=在一、三象限,而二次函數(shù)y=kx2﹣k開口向上,與y軸交點在原點下方,故選項D正確;故選:D.【點睛】本題主要考查反比例函數(shù)與二次函數(shù)的圖象,掌握k對反比例函數(shù)與二次函數(shù)的圖象的影響是解題的關(guān)鍵.3、C【分析】根據(jù)軸對稱和中心對稱圖形的概念可判別.【詳解】(A)既不是軸對稱也不是中心對稱;(B)是軸對稱但不是中心對稱;(C)是軸對稱和中心對稱;(D)是中心對稱但不是軸對稱故選:C4、D【分析】過點D作DE∥AB交AO于點E,通過平行線分線段成比例求出的長度,從而確定點D的坐標,代入到解析式中得到k的值,最后利用矩形的面積即可得出答案.【詳解】過點D作DE∥AB交AO于點E∵DE∥AB∴∵∴∴∴∵點D在上∴∵∴故選D【點睛】本題主要考查平行線分線段成比例及反比例函數(shù),掌握平行線分線段成比例是解題的關(guān)鍵.5、C【解析】大于0的是正數(shù),小于0的是負數(shù),據(jù)此進行求解即可.【詳解】∵1>0,﹣(﹣1)=1>0,|﹣1|=1>0,∴A,B,D都是正數(shù),∵﹣1<0,∴﹣1是負數(shù).故選:C.【點睛】本題主要考查正數(shù)的概念,掌握正數(shù)大于0,是解題的關(guān)鍵.6、C【詳解】如圖,由題意得:AP=3,AB=6,∴在圓錐側(cè)面展開圖中故小貓經(jīng)過的最短距離是故選C.7、C【解析】令x=0,則y=3,拋物線與y軸的交點為(0,3).【詳解】解:令x=0,則y=3,
∴拋物線與y軸的交點為(0,3),
故選:C.【點睛】本題考查二次函數(shù)的圖象及性質(zhì);熟練掌握二次函數(shù)的圖象及性質(zhì),會求函數(shù)與坐標軸的交點是解題的關(guān)鍵.8、B【解析】試題解析:∵關(guān)于x的一元二次方程有兩個不相等的實數(shù)根,故選B.9、B【解析】根據(jù)反比例函數(shù)的一般形式即可判斷.【詳解】A.不符合反比例函數(shù)的一般形式的形式,選項錯誤;B.符合反比例函數(shù)的一般形式的形式,選項正確;C.不符合反比例函數(shù)的一般形式的形式,選項錯誤;D.不符合反比例函數(shù)的一般形式的形式,選項錯誤.故選B.【點睛】本題考查了反比例函數(shù)的定義,熟練掌握反比例函數(shù)的一般形式是解題的關(guān)鍵.10、A【分析】根據(jù)平行四邊形的性質(zhì)和相似三角形的性質(zhì)解答即可.【詳解】解:∵四邊形是平行四邊形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故選:A.【點睛】本題考查了平行四邊形的性質(zhì)和相似三角形的判定和性質(zhì),屬于??碱}型,熟練掌握相似三角形的判定和性質(zhì)是解題的關(guān)鍵.11、A【分析】先根據(jù)圓的周長公式求得底面圓周長,再根據(jù)弧長公式即可求得結(jié)果.【詳解】解:由題意得底面圓周長=π×30=30πcm,解得:n=108故選A.【點睛】本題考查圓的周長公式,弧長公式,方程思想是初中數(shù)學(xué)學(xué)習(xí)中非常重要的思想方法,是中考的熱點,在各種題型中均有出現(xiàn),一般難度不大,需特別注意.12、A【解析】首先求出一元二次方程根的判別式,然后結(jié)合選項進行判斷即可.【詳解】解:∵一元二次方程,∴△=,即△<0,∴一元二次方程無實數(shù)根,故選A.【點睛】本題主要考查了根的判別式的知識,解題關(guān)鍵是要掌握一元二次方程根的情況與判別式△的關(guān)系:(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.二、填空題(每題4分,共24分)13、16【分析】先證明,然后再根據(jù)相似三角形的性質(zhì)求解即可.【詳解】∵AB⊥BC,CD⊥BC且∠AEB=∠DEC∴∴∴故本題答案為:16.【點睛】本題考查了相似三角形的應(yīng)用,準確識圖,熟練掌握和靈活運用相似三角形的判定定理與性質(zhì)定理是解題的關(guān)鍵.14、1【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】解:根據(jù)比例中項的概念結(jié)合比例的基本性質(zhì),得:比例中項的平方等于兩條線段的乘積,
∴,即,解得,(不合題意,舍去)
故答案為:1.【點睛】此題考查了比例線段;理解比例中項的概念,注意線段不能是負數(shù).15、x﹣2y=1.【分析】根據(jù)從布袋里摸出白球的概率為,列出=,整理即可得.【詳解】根據(jù)題意得=,整理,得:x﹣2y=1,故答案為:x﹣2y=1.【點睛】本題考查概率公式的應(yīng)用,熟練掌握概率公式建立方程是解題的關(guān)鍵.16、1【分析】根據(jù)題意得出△AOD∽△OCE,進而得出,即可得出k=EC×EO=1.【詳解】解:連接CO,過點A作AD⊥x軸于點D,過點C作CE⊥x軸于點E,∵連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,∴CO⊥AB,∠CAB=10°,則∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,∴==1,∵點A是雙曲線y=-在第二象限分支上的一個動點,∴S△AOD=×|xy|=,∴S△EOC=,即×OE×CE=,∴k=OE×CE=1,故答案為1.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點以及相似三角形的判定與性質(zhì),正確添加輔助線,得出△AOD∽△OCE是解題關(guān)鍵.17、【解析】首先分別解出兩個不等式的解集,再確定不等式組的解集.【詳解】解答:,
由①得:,
由②得:,
∴不等式組的解集為,故答案為:【點睛】此題主要考查了解一元一次不等式組,關(guān)鍵是解不等式.18、1【分析】根據(jù)扇形面積公式和扇形的弧長公式之間的關(guān)系:S扇形,把對應(yīng)的數(shù)值代入即可求得半徑r的長.【詳解】解:∵S扇形,∴,∴.故答案為1.【點睛】本題考查了扇形面積和弧長公式之間的關(guān)系,解此類題目的關(guān)鍵是掌握住扇形面積公式和扇形的弧長公式之間的等量關(guān)系:S扇形.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接OD,由為的直徑得到∠ACB=90,根據(jù)CD平分∠ACB及圓周角定理得到∠AOD=90,再根據(jù)DE∥AB推出OD⊥DE,即可得到是的切線;(2)過點C作CH⊥AB于H,CD交AB于M,利用勾股定理求出AB,再利用面積法求出CH,求出OH,根據(jù)△CHM∽△DOM求出HM得到AM,再利用平行線證明△CAM∽△CED,即可求出DE.【詳解】(1)如圖,連接OD,∵為的直徑,∴∠ACB=90,∵CD平分∠ACB,∴∠ACD=45,∴∠AOD=90,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴是的切線;(2)過點C作CH⊥AB于H,CD交AB于M,∵∠ACB=90,,,∴AB=,∵S△ABC=,∴CH=,∴AH=,∴OH=OA-AH=5-3.6=1.4,∵∠CHM=∠DOM=90,∠HMC=∠DMO,∴△CHM∽△DOM,∴∴=,,∴HM=,∴AM=AH+HM=,∵AB∥DE,∴△CAM∽△CED,∴,∴DE=.【點睛】此題考查圓的性質(zhì),圓周角定理,切線的判定定理,三角形相似,勾股定理,(2)是本題的難點,利用平行線構(gòu)建相似三角形求出DE的長度,根據(jù)此思路相應(yīng)的添加輔助線進行證明.20、【分析】根據(jù)根與系數(shù)的關(guān)系建立關(guān)于a的不等式,再結(jié)合即可求出a的取值范圍.【詳解】解:依題意得,,∵,∴,解得,又由,解得,∴的取值范圍為.【點睛】本題考查一元二次方程根與系數(shù)的關(guān)系,熟記兩根之和與兩根之積的公式是解題的關(guān)鍵,還需要注意公式使用的前提是.21、(1)見解析;(2)【分析】(1)畫樹狀圖即可得到12種等可能的結(jié)果數(shù);(2)利用反比例函數(shù)圖象上點的坐標特征得到點(﹣2,1)和點(1,﹣2)滿足條件,然后根據(jù)概率公式計算,即可.【詳解】(1)畫樹狀圖為:共有12種等可能的結(jié)果,它們?yōu)椋ī?,﹣2),(﹣1,0),(﹣1,1),(﹣2,﹣1),(﹣2,0),(﹣2,1),(0,﹣1),(0,﹣2),(0,1),(1,﹣1),(1,﹣2),(1,0);(2)∵點M(x,y)在函數(shù)y=的圖象上的點有(﹣2,1),(1,﹣2),∴點M(x,y)在函數(shù)y=的圖象上的概率==.【點睛】本題主要考查簡單事件的概率和反比例函數(shù)的綜合,畫樹狀圖,是解題的關(guān)鍵.22、(1)詳見解析;(2)詳見解析【分析】(1)根據(jù)題意得出角相等得出△A1A2P∽△A1OA2,再根據(jù)相似三角形的性質(zhì)即可得出答案;(2)設(shè)A1A2=x,得出OP=PA2=A1A2=x,A1P=1-x,再代入中即可求出答案.【詳解】證明:(1)∵A1A2A3…A10是半徑為1的⊙O的內(nèi)接正十邊形,A2P平分∠OA2A1∴∠A1OA2=36°,∠A1=∠OA2A1=72°,∠A1A2P=∠O=36°∴∠A1PA2=72°,OP=PA2,∴△A1A2P∽△A1OA2,∴A1A22=A1P?OA1(2)設(shè)A1A2=x,則OP=PA2=A1A2=x,∴A1P=1-x,由(1)得A1A22=A1P?OA1∴,∴,解得,(負值舍去)∴,即【點睛】本題考查了正十邊形的性質(zhì)及相似三角形的判定及性質(zhì)定理,能夠根據(jù)正十邊形的性質(zhì)得出角的度數(shù)是解題的關(guān)鍵.23、(1);;(2).【分析】(1)由題意利用待定系數(shù)法求一次函數(shù)以及反比例函數(shù)解析式即可;(2)根據(jù)題意求出BE和BD的值,運用三角形面積公式即可得解.【詳解】解:(1)由已知得,,∴.將點、點坐標代入,得,解得,直線解析式為;將點坐標代入得,∴反比例函數(shù)的解析式為.(2)∵E和B同橫軸坐標,∴當時,即,∵,,D(1,0)∴BD=1,即為以BE為底的高,∴.【點睛】本題考查反比例函數(shù)和幾何圖形的綜合問題,熟練掌握待定系數(shù)法求反比例函數(shù)解析式以及運用數(shù)形結(jié)合思維分析是解題的關(guān)鍵.24、(1)y=﹣;(2)M(5,﹣)或(﹣1,8).【解析】(1)由Q(2,0),推出P(2,-4),利用待定系數(shù)法即可解決問題;
(2)根據(jù)三角形的面積公式求出MN的長,分兩種情形求出點M的坐標即可.【詳解】(1)把x=2代入y=﹣2x得y=﹣4∴P(2,﹣4
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 護理研究培訓(xùn)課程
- 內(nèi)科護理消化系統(tǒng)疾病護理
- 腦梗護理中的健康教育
- 外科護理科研方法
- 腦震蕩護理質(zhì)量管理與效果評價
- 疝氣護理中的引流管護理
- 水電解質(zhì)與酸堿平衡
- 骨折病人的康復(fù)案例分析
- 聽課件的策略與方法
- 奢侈品銷售話術(shù)
- 急診科臨床技術(shù)操作規(guī)范和臨床診療指南
- 各科課程德育融合實施方案匯編
- 非遺漆扇藝術(shù)
- 陶淵明《飲酒》其五課件
- 汽車車身連接工藝課件
- 關(guān)于易肇事肇禍等嚴重精神障礙患者收治管護實施方案
- 《無人機安全飛行及法律法規(guī)》參考試題庫(附答案)
- 智能家居系統(tǒng)設(shè)計與應(yīng)用技術(shù)方案
- 籃球突破分球訓(xùn)練課件
- 免疫科自身免疫性疾病治療方案
- 【287】醫(yī)務(wù)人員互聯(lián)網(wǎng)健康科普負面行為清單(試行)
評論
0/150
提交評論