安徽省沿淮教育聯(lián)盟2022-2023學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第1頁
安徽省沿淮教育聯(lián)盟2022-2023學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第2頁
安徽省沿淮教育聯(lián)盟2022-2023學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第3頁
安徽省沿淮教育聯(lián)盟2022-2023學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第4頁
安徽省沿淮教育聯(lián)盟2022-2023學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.已知2x=3y,則下列比例式成立的是()A. B. C. D.2.已知關(guān)于x的方程x2-kx-6=0的一個根為x=-3,則實數(shù)k的值為()A.1 B.-1 C.2 D.-23.如圖所示,在矩形ABCD中,點F是BC的中點,DF的延長線與AB的延長線相交于點E,DE與AC相交于點O,若,則()A.4 B.6 C.8 D.104.一次函數(shù)y=﹣3x+b圖象上有兩點A(x1,y1),B(x2,y2),若x1<x2,則y1,y2的大小關(guān)系是()A.y1>y2 B.y1<y2C.y1=y(tǒng)2 D.無法比較y1,y2的大小5.如圖,在△ABC中,AB的垂直平分線交BC于D,AC的中垂線交BC于E,∠DAE=20°,則∠BAC的度數(shù)為()A.70° B.80° C.90° D.100°6.在Rt△ABC中,∠C=90°,若cosB=,則∠B的度數(shù)是()A.90° B.60° C.45° D.30°7.二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,則t的值為()A.0 B. C.1 D.28.如圖,△ABC的頂點都是正方形網(wǎng)格中的格點,則cos∠ABC等于()A. B. C. D.9.某學(xué)校要種植一塊面積為100m2的長方形草坪,要求兩邊長均不小于5m,則草坪的一邊長為y(單位:m)隨另一邊長x(單位:m)的變化而變化的圖象可能是()A. B. C. D.10.下列事件中,是隨機事件的是()A.任意畫一個三角形,其內(nèi)角和為180° B.經(jīng)過有交通信號的路口,遇到紅燈C.太陽從東方升起 D.任意一個五邊形的外角和等于540°11.如圖,數(shù)軸上的點,,,表示的數(shù)分別為,,,,從,,,四點中任意取兩點,所取兩點之間的距離為的概率是()A. B. C. D.12.如圖所示為兩把按不同比例尺進行刻度的直尺,每把直尺的刻度都是均勻的,已知兩把直尺在刻度10處是對齊的,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,則上面直尺的刻度16與下面直尺對應(yīng)的刻度是()A.19.4 B.19.5 C.19.6 D.19.7二、填空題(每題4分,共24分)13.如圖,AB是⊙O的直徑,AB=6,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為_____.14.已知線段a、b、c,其中c是a、b的比例中項,若a=2cm,b=8cm,則線段c=_____cm.15.在正方形ABCD中,對角線AC、BD相交于點O.如果AC=3,那么正方形ABCD的面積是__________.16.若函數(shù)為關(guān)于的二次函數(shù),則的值為__________.17.某種傳染病,若有一人感染,經(jīng)過兩輪傳染后將共有49人感染.設(shè)這種傳染病每輪傳染中平均一個人傳染了x個人,列出方程為______.18.二次函數(shù)的圖象與軸只有一個公共點,則的值為________.三、解答題(共78分)19.(8分)超速行駛被稱為“馬路第一殺手”,為了讓駕駛員自覺遵守交通規(guī)則,市公路檢測中在一事故多發(fā)地段安裝了一個測速儀器,如圖所示,已知檢測點A設(shè)在距離公路BC20米處,∠B=45°,∠C=30°,現(xiàn)測得一輛汽車從B處行駛到C處所用時間為2.7秒.(1)求B,C之間的距離(結(jié)果保留根號);(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數(shù)據(jù):1.7,≈1.4)20.(8分)下表是某地連續(xù)5天的天氣情況(單位:):日期1月1日1月2日1月3日1月4日1月5日最高氣溫57684最低氣溫-20-213(1)1月1日當(dāng)天的日溫差為______(2)利用方差判斷該地這5天的日最高氣溫波動大還是日最低氣溫波動大.21.(8分)九年級(1)班的小華和小紅兩名學(xué)生10次數(shù)學(xué)測試成績?nèi)缦卤恚ū鞩)所示:小花708090807090801006080小紅908010060908090606090現(xiàn)根據(jù)上表數(shù)據(jù)進行統(tǒng)計得到下表(表Ⅱ):姓名平均成績中位數(shù)眾數(shù)小華80小紅8090(1)填空:根據(jù)表I的數(shù)據(jù)完成表Ⅱ中所缺的數(shù)據(jù);(2)老師計算了小紅的方差請你計算小華的方差并說明哪名學(xué)生的成績較為穩(wěn)定.22.(10分)如圖,在平行四邊形ABCD中,AB<BC.(1)利用尺規(guī)作圖,在BC邊上確定點E,使點E到邊AB,AD的距離相等(不寫作法,保留作圖痕跡);(2)若BC=8,CD=5,則CE=.23.(10分)已知:如圖,在△ABC中,AB=AC,以AB為直徑的⊙O交BC于點D,過點D作DE⊥AC于點E.(1)求證:DE是⊙O的切線.(2)若⊙O的半徑為3cm,∠C=30°,求圖中陰影部分的面積.24.(10分)計算:(1);(2)解方程25.(12分)如圖,Rt△FHG中,H=90°,F(xiàn)H∥x軸,,則稱Rt△FHG為準黃金直角三角形(G在F的右上方).已知二次函數(shù)的圖像與x軸交于A、B兩點,與y軸交于點E(0,),頂點為C(1,),點D為二次函數(shù)圖像的頂點.(1)求二次函數(shù)y1的函數(shù)關(guān)系式;(2)若準黃金直角三角形的頂點F與點A重合、G落在二次函數(shù)y1的圖像上,求點G的坐標及△FHG的面積;(3)設(shè)一次函數(shù)y=mx+m與函數(shù)y1、y2的圖像對稱軸右側(cè)曲線分別交于點P、Q.且P、Q兩點分別與準黃金直角三角形的頂點F、G重合,求m的值并判斷以C、D、Q、P為頂點的四邊形形狀,請說明理由.26.如圖,AC是⊙O的直徑,PA切⊙O于點A,PB切⊙O于點B,且∠APB=60°.(1)求∠BAC的度數(shù);(2)若PA=,求點O到弦AB的距離.

參考答案一、選擇題(每題4分,共48分)1、C【分析】把各個選項依據(jù)比例的基本性質(zhì),兩內(nèi)項之積等于兩外項之積,已知的比例式可以轉(zhuǎn)化為等積式2x=3y,即可判斷.【詳解】A.變成等積式是:xy=6,故錯誤;B.變成等積式是:3x+3y=4y,即3x=y,故錯誤;C.變成等積式是:2x=3y,故正確;D.變成等積式是:5x+5y=3x,即2x+5y=0,故錯誤.故選C.【點睛】本題考查了判斷兩個比例式是否能夠互化的方法,即轉(zhuǎn)化為等積式,判斷是否相同即可.2、B【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.【詳解】解:因為x=-3是原方程的根,所以將x=-3代入原方程,即(-3)2+3k?6=0成立,解得k=-1.故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義,解題的關(guān)鍵是把方程的解代入進行求解.3、C【解析】由矩形的性質(zhì)得出AB=CD,AB∥CD,∠ABC=∠BCD=90°,由ASA證明△BEF≌△CDF,得出BE=CD=AB,則AE=2AB=2CD,再根據(jù)AOECOD,面積比等于相似比的平方即可?!驹斀狻俊咚倪呅蜛BCD是矩形,

∴AB=CD,AB∥CD,∠ABC=∠BCD=90°,

∴∠EBF=90°,

∵F為BC的中點,

∴BF=CF,

在△BEF和△CDF中,,

∴△BEF≌△CDF(ASA),

∴BE=CD=AB,

∴AE=2AB=2CD,

∵AB∥CD,∴AOECOD,∴=4:1∵∴=8故選:C.【點睛】本題考查了矩形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì);熟練掌握有關(guān)的性質(zhì)與判定是解決問題的關(guān)鍵.4、A【分析】根據(jù)一次函數(shù)圖象的增減性判斷即可.【詳解】∵k=﹣3<0,∴y值隨x值的增大而減小,又∵x1<x1,∴y1>y1.故選:A.【點睛】本題考查一次函數(shù)圖象的增減性,關(guān)鍵在于先判斷k值再根據(jù)圖象的增減性判斷.5、D【分析】先根據(jù)垂直平分線的特點得出∠B=∠DAB,∠C=∠EAC,然后根據(jù)△ABC的內(nèi)角和及∠DAE的大小,可推導(dǎo)出∠DAB+∠EAC的大小,從而得出∠BAC的大小.【詳解】如下圖∵DM是線段AB的垂直平分線,∴DA=DB,∴∠B=∠DAB,同理∠C=∠EAC,∵∠B+∠DAB+∠C+∠EAC+∠DAE=180°,∵∠DAE=20°∴∠DAB+∠EAC=80°,∴∠BAC=100°,故選:D.【點睛】本題考查垂直平分線的性質(zhì),解題關(guān)鍵是利用整體思想,得出∠DAB+∠EAC=80°.6、B【分析】根據(jù)銳角三角函數(shù)值,即可求出∠B.【詳解】解:∵在Rt△ABC中,cosB=,∴∠B=60°故選:B.【點睛】此題考查的是根據(jù)銳角三角函數(shù)值求角的度數(shù),掌握特殊角的銳角三角函數(shù)值是解決此題的關(guān)鍵.7、C【解析】根據(jù)二次函數(shù)的對稱軸方程計算.【詳解】解:∵二次函數(shù)y=x2+(t﹣1)x+2t﹣1的對稱軸是y軸,∴﹣=0,解得,t=1,故選:C.【點睛】本題考查二次函數(shù)對稱軸性質(zhì),熟練掌握對稱軸的公式是解題的關(guān)鍵.8、B【詳解】由格點可得∠ABC所在的直角三角形的兩條直角邊為2,4,∴斜邊為.∴cos∠ABC=.故選B.9、C【詳解】由草坪面積為100m2,可知x、y存在關(guān)系y=,然后根據(jù)兩邊長均不小于5m,可得x≥5、y≥5,則x≤20,故選:C.10、B【解析】根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型.【詳解】A.任意畫一個三角形,其內(nèi)角和為180°是必然事件;B.經(jīng)過有交通信號的路口,遇到紅燈是隨機事件;C.太陽從東方升起是必然事件;D.任意一個五邊形的外角和等于540°是不可能事件.故選B.【點睛】本題考查了必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.11、D【分析】利用樹狀圖求出可能結(jié)果即可解答.【詳解】解:畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中所取兩點之間的距離為2的結(jié)果數(shù)為4,所取兩點之間的距離為2的概率==.故選D.【點睛】本題考查畫樹狀圖或列表法求概率,掌握畫樹狀圖的方法是解題關(guān)鍵.12、C【分析】根據(jù)兩把直尺在刻度10處是對齊的及上面直尺的刻度11與下面直尺對應(yīng)的刻度是11.6,得出上面直尺的10個小刻度,對應(yīng)下面直尺的16個小刻度,進而判斷出上面直尺的刻度16與下面直尺對應(yīng)的刻度即可.【詳解】解:由于兩把直尺在刻度10處是對齊的,觀察圖可知上面直尺的刻度11與下面直尺對應(yīng)的刻度是11.6,即上面直尺的10個小刻度,對應(yīng)下面直尺的16個小刻度,且上面的直尺在刻度15處與下面的直尺在刻度18處也剛好對齊,因此上面直尺的刻度16與下面直尺對應(yīng)的刻度是18+1.6=19.6,故答案為C【點睛】本題考查了學(xué)生對圖形的觀察能力,通過圖形得出上面直尺的10個小刻度,對應(yīng)下面直尺的16個小刻度是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、3【分析】作出D關(guān)于AB的對稱點D',則PC+PD的最小值就是CD'的長度.在△COD'中根據(jù)邊角關(guān)系即可求解.【詳解】作出D關(guān)于AB的對稱點D',連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為的中點,∴∠BAD'∠CAB=15°,∴∠CAD'=45°,∴∠COD'=90°.∴△COD'是等腰直角三角形.∵OC=OD'AB=3,∴CD'=3.故答案為:3.【點睛】本題考查了圓周角定理以及路程的和最小的問題,正確作出輔助線是解答本題的關(guān)鍵.14、4【分析】根據(jù)比例中項的定義,列出比例式即可求解.【詳解】∵線段c是a、b的比例中項,線段a=2cm,b=8cm,∴=,∴c2=ab=2×8=16,∴c1=4,c2=﹣4(舍去),∴線段c=4cm.故答案為:4【點睛】本題考查了比例中項的概念:當(dāng)兩個比例內(nèi)項相同時,就叫比例中項.這里注意線段不能是負數(shù).15、1【分析】由正方形的面積公式可求解.【詳解】解:∵AC=3,

∴正方形ABCD的面積=3×3×=1,

故答案為:1.【點睛】本題考查了正方形的性質(zhì),熟練運用正方形的性質(zhì)是解題的關(guān)鍵.16、2【分析】根據(jù)二次函數(shù)的定義,列出關(guān)于m的方程和不等式,即可求解.【詳解】∵函數(shù)為關(guān)于的二次函數(shù),∴且,∴m=2.故答案是:2.【點睛】本題主要考查二次函數(shù)的定義,列出關(guān)于m的方程和不等式,是解題的關(guān)鍵.17、x(x+1)+x+1=1.【分析】設(shè)每輪傳染中平均一人傳染x人,那么經(jīng)過第一輪傳染后有x人被感染,那么經(jīng)過兩輪傳染后有x(x+1)+x+1人感染,列出方程即可.【詳解】解:設(shè)每輪傳染中平均一人傳染x人,則第一輪后有x+1人感染,第二輪后有x(x+1)+x+1人感染,由題意得:x(x+1)+x+1=1.故答案為:x(x+1)+x+1=1.【點睛】本題主要考查了由實際問題抽象出一元二次方程,掌握一元二次方程是解題的關(guān)鍵.18、【解析】根據(jù)△=b2-4ac=0時,拋物線與x軸有1個交點得到△=(-2)2-4m=0,然后解關(guān)于m的方程即可.【詳解】根據(jù)題意得△=(-2)2-4m=0,

解得m=1.

故答案是:1.【點睛】考查了拋物線與x軸的交點:對于二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),△=b2-4ac決定拋物線與x軸的交點個數(shù):△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.三、解答題(共78分)19、(1)(20+20)m;(2)這輛汽車沒超速,見解析【分析】(1)如圖作AD⊥BC于D.則AD=20m,求出CD、BD即可解決問題;(2)求出汽車的速度和此地限速為80km/h比較大小,即可解決問題,注意統(tǒng)一單位.【詳解】(1)如圖作AD⊥BC于D.則AD=10m,在Rt△ABD中,∵∠B=45°,∴BD=AD=10m,在Rt△ACD中,∵∠C=30°,∴tan30°,∴CDAD=20m,∴BC=BD+DC=(20+20)m.(2)結(jié)論:這輛汽車沒超速.理由如下:∵BC=BD+DC=(20+20)BC≈54m,∴汽車速度20m/s=72km/h.∵72km/h<80km/h,∴這輛汽車沒超速.【點睛】本題考查了解直角三角形的應(yīng)用,銳角三角函數(shù)、速度、時間、路程之間的關(guān)系等知識,解答本題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.20、(1)7;(2)日最低氣溫波動大.【分析】(1)根據(jù)溫差=最高溫度-最低溫度,再根據(jù)有理數(shù)的減法進行計算即可得出答案(2)利用方差公式直接求出最高氣溫與最低氣溫的方差,再進行比較即可.【詳解】解:(1)5-(-2)=5+2=7所以1月1日當(dāng)天的日溫差為7(2)最高氣溫的平均數(shù):最高氣溫的方差為:同理得出,最低氣溫的平均數(shù):最低氣溫的方差為:∵∴日最低氣溫波動大.【點睛】本題考查的知識點是求數(shù)據(jù)的平均數(shù)與方差,熟記方差公式是解題的關(guān)鍵.21、(1)見解析;(2)小華的方差是120,小華成績穩(wěn)定.【分析】(1)由表格可知,小華10次數(shù)學(xué)測試中,得60分的1次,得70分的2次,得1分的4次,得90分的2次,得100分的1次,根據(jù)加權(quán)平均數(shù)的公式計算小華的平均成績,將小紅10次數(shù)學(xué)測試的成績從小到大排列,可求出中位數(shù),根據(jù)李華的10個數(shù)據(jù)里的各數(shù)出現(xiàn)的次數(shù),可求出測試成績的眾數(shù);

(2)先根據(jù)方差公式分別求出兩位同學(xué)10次數(shù)學(xué)測試成績的方差,再比較大小,其中較小者成績較為穩(wěn)定.【詳解】(1)解:(1)小華的平均成績?yōu)椋海?0×1+70×2+1×4+90×2+100×1)=1,

將小紅10次數(shù)學(xué)測試的成績從小到大排列為:60,60,60,1,1,90,90,90,90,100,第五個與第六個數(shù)據(jù)為1,90,所以中位數(shù)為=85,

小華的10個數(shù)據(jù)里1分出現(xiàn)了4次,次數(shù)最多,所以測試成績的眾數(shù)為1.

填表如下:姓

名平均成績中位數(shù)眾數(shù)小華11小紅85(2)小華同學(xué)成績的方差:S2=[102+02+102+02+102+102+02+202+202+02]

=(100+100+100+100+400+400)

=120,

小紅同學(xué)成績的方差為200,

∵120<200,

∴小華同學(xué)的成績較為穩(wěn)定.【點睛】本題考查平均數(shù)、中位數(shù)、眾數(shù)、方差的意義.一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù).將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕校绻麛?shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).方差是用來衡量一組數(shù)據(jù)波動大小的量,方差越大,表明這組數(shù)據(jù)偏離平均數(shù)越大,即波動越大,數(shù)據(jù)越不穩(wěn)定;反之,方差越小,表明這組數(shù)據(jù)分布比較集中,各數(shù)據(jù)偏離平均數(shù)越小,即波動越小,數(shù)據(jù)越穩(wěn)定.22、(1)見解析;(2)1.【分析】根據(jù)角平分線上的點到角的兩邊距離相等知作出∠A的平分線即可;根據(jù)平行四邊形的性質(zhì)可知AB=CD=5,AD∥BC,再根據(jù)角平分線的性質(zhì)和平行線的性質(zhì)得到∠BAE=∠BEA,再根據(jù)等腰三角形的性質(zhì)和線段的和差關(guān)系即可求解.【詳解】(1)如圖所示:E點即為所求.(2)∵四邊形ABCD是平行四邊形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分線,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=1.考點:作圖—復(fù)雜作圖;平行四邊形的性質(zhì)23、(1)見解析;(1)(3π﹣)cm1【分析】(1)由等腰三角形的性質(zhì)證出∠ODB=∠C.得出OD∥AC.由已知條件證出DE⊥OD,即可得出結(jié)論;(1)由垂徑定理求出OF,由勾股定理得出DF,求出BD,得出△BOD的面積,再求出扇形BOD的面積,即可得出結(jié)果.【詳解】(1)連接OD,如圖1所示:∵OD=OB,∴∠B=∠ODB.∵AB=AC,∴∠B=∠C.∴∠ODB=∠C.∴OD∥AC.∵DE⊥AC,∴DE⊥OD,∴DE是⊙O的切線.(1)過O作OF⊥BD于F,如圖1所示:∵∠C=30°,AB=AC,OB=OD,∴∠OBD=∠ODB=∠C=30°,∴∠BOD=110°,在Rt△DFO中,∠FDO=30°,∴OF=OD=cm,∴DF==cm,∴BD=1DF=3cm,∴S△BOD=×BD×OF=×3×=cm1,S扇形BOD==3πcm1,∴S陰=S扇形BOD﹣S△BOD==(3π﹣)cm1.【點睛】本題考查了切線的判定、等腰三角形的性質(zhì)、平行線的判定與性質(zhì)、勾股定理、三角形和扇形面積的計算等知識;熟練掌握切線的判定,由垂徑定理和勾股定理求出OF和DF是解決問題(1)的關(guān)鍵.24、(1);(2)【分析】(1)先把特殊角的三角函數(shù)值代入原式,然后再計算;

(2)利用配方法求解即可.【詳解】解:(1)原式(2)∵,∴,即,則,∴.【點睛】本題考查了特殊角的三角函數(shù)值以及用因式分解法解方程.記住特殊角的三角函數(shù)值是解題關(guān)鍵,25、(1)y=(x-1)2-4;(2)點G坐標為(3.6,2.76),S△FHG=6.348;(3)m=0.6,四邊形CDPQ為平行四邊形,理由見解析.【分析】(1)利用頂點式求解即可,(2)將G點代入函數(shù)解析式求出坐標,利用坐標的特點即可求出面積,(3)作出圖象,延長QH,交x軸于點R,由平行線的性質(zhì)得證明△AQR∽△PHQ,設(shè)Q[n,0.6(n+1)],代入y=mx+m中,即可證明四邊形CDPQ為平行四邊形.【詳解】(1)設(shè)二次函數(shù)的解析式是y=a(x-h)2+k,(a≠0),由題可知該拋物線與y軸交于點E(0,),頂點為C(1,),∴y=a(x-1)2-4,代入E(0,),解得a=1,()(2)設(shè)G[a,0.6(a+1)],代入函數(shù)關(guān)系式,得,,解得a1=3.6,a2=-1(舍去),所以點G坐標為(3.6,2.76).S△FHG=6.348(3)y=mx+m=m(x+1),當(dāng)x=-1時,y=0,所以直線y=mx+m延長QH,交x軸于點R,由平行線的性質(zhì)得,QR⊥x軸.因為FH∥x軸,所以∠QPH=∠QAR,因為∠PHQ=∠ARQ=90°,所以△AQR∽△PQH,所以=0.6,設(shè)Q[n,0.6(n+1)],代入y=mx+m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論