版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,在△中,,兩點分別在邊,上,∥.若,則為()A. B. C. D.2.用公式法解一元二次方程時,化方程為一般式當中的依次為()A. B. C. D.3.如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論正確的個數(shù)是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S四邊形ECFG=2S△BGE.A.4 B.3 C.2 D.14.如圖,△ABC中,∠ACB=90°,∠A=30°,將△ABC繞C點按逆時針方向旋轉(zhuǎn)角(0°<<90°)得到△DEC,設(shè)CD交AB于點F,連接AD,當旋轉(zhuǎn)角度數(shù)為________,△ADF是等腰三角形.A.20° B.40° C.10° D.20°或40°5.下面四組圖形中,必是相似三角形的為()A.兩個直角三角形B.兩條邊對應成比例,一個對應角相等的兩個三角形C.有一個角為40°的兩個等腰三角形D.有一個角為100°的兩個等腰三角形6.拋物線向右平移4個單位長度后與拋物線重合,若(-1,3)在拋物線上,則下列點中,一定在拋物線上的是()A.(3,3) B.(3,-1) C.(-1,7) D.(-5,3)7.如圖,.分別與相切于.兩點,點為上一點,連接.,若,則的度數(shù)為().A.; B.; C.; D..8.一個鐵制零件(正方體中間挖去一個圓柱形孔)如圖放置,它的左視圖是()A.B.C.D.9.一個幾何體由若干個相同的正方體組成,其主視圖和左視圖如圖所示,則組成這個幾何體的正方體個數(shù)最小值為()A.5 B.6 C.7 D.810.如圖,在△ABC中,DE∥FG∥BC,且AD:AF:AB=1:2:4,則S△ADE:S四邊形DFGE:S四邊形FBCG等于()A.1:2:4 B.1:4:16 C.1:3:12 D.1:3:7二、填空題(每小題3分,共24分)11.如圖所示,個邊長為1的等邊三角形,其中點,,,,…在同一條直線上,若記的面積為,的面積為,的面積為,…,的面積為,則______.12.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.13.用一塊圓心角為120°的扇形鐵皮,圍成一個底面直徑為10cm的圓錐形工件的側(cè)面,那么這個圓錐的高是_____cm.14.已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為直線x=1,則下列結(jié)論:①abc>0;②方程ax2+bx+c=0的兩根是x1=﹣1,x2=3;③2a+b=0;④4a2+2b+c<0,其中正確結(jié)論的序號為_____.15.找出如下圖形變化的規(guī)律,則第100個圖形中黑色正方形的數(shù)量是_____.16.小明和小紅在太陽光下行走,小明身高1.5m,他的影長2.0m,小紅比小明矮30cm,此刻小紅的影長為______m.17.如圖,反比例函數(shù)y=的圖象上有一動點A,連接AO并延長交圖象的另一支于點B,在第二象限內(nèi)有一點C,滿足AC=BC,當點A運動時,點C始終在函數(shù)y=的圖象上運動,tan∠CAB=2,則k=_____.18.如圖,是的直徑,,弦,的平分線交于點,連接,則陰影部分的面積是________.(結(jié)果保留)三、解答題(共66分)19.(10分)某次數(shù)學競賽共有3道判斷題,認為正確的寫“”,錯誤的寫“”,小明在做判斷題時,每道題都在“”或“”中隨機寫了一個.(1)小明做對第1題的概率是;(2)求小明這3道題全做對的概率.20.(6分)已知:如圖,在平行四邊形ABCD中,O為對角線BD的中點,過點O的直線EF分別交AD,BC于E,F(xiàn)兩點,連結(jié)BE,DF.(1)求證:△DOE≌△BOF.(2)當∠DOE等于多少度時,四邊形BFDE為菱形?請說明理由.21.(6分)如圖,在平面直角坐標系中,直線y=﹣5x+5與x軸、y軸分別交于A,C兩點,拋物線y=x2+bx+c經(jīng)過A,C兩點,與x軸交于另一點B.(1)求拋物線解析式及B點坐標;(2)x2+bx+c≤﹣5x+5的解集是;(3)若點M為拋物線上一動點,連接MA、MB,當點M運動到某一位置時,△ABM面積為△ABC的面積的倍,求此時點M的坐標.22.(8分)已知拋物線.(1)當,時,求拋物線與軸的交點個數(shù);(2)當時,判斷拋物線的頂點能否落在第四象限,并說明理由;(3)當時,過點的拋物線中,將其中兩條拋物線的頂點分別記為,,若點,的橫坐標分別是,,且點在第三象限.以線段為直徑作圓,設(shè)該圓的面積為,求的取值范圍.23.(8分)如圖,一次函數(shù)y1=x+4的圖象與反比例函數(shù)y2=的圖象交于A(﹣1,a),B兩點,與x軸交于點C.(1)求k.(2)根據(jù)圖象直接寫出y1>y2時,x的取值范圍.(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,求k的取值.24.(8分)若邊長為6的正方形ABCD繞點A順時針旋轉(zhuǎn),得正方形AB′C′D′,記旋轉(zhuǎn)角為a.(I)如圖1,當a=60°時,求點C經(jīng)過的弧的長度和線段AC掃過的扇形面積;(Ⅱ)如圖2,當a=45°時,BC與D′C′的交點為E,求線段D′E的長度;(Ⅲ)如圖3,在旋轉(zhuǎn)過程中,若F為線段CB′的中點,求線段DF長度的取值范圍.25.(10分)如圖,已知中,,.求的面積.26.(10分)在平面內(nèi),給定不在同一直線上的點A,B,C,如圖所示.點O到點A,B,C的距離均等于a(a為常數(shù)),到點O的距離等于a的所有點組成圖形G,的平分線交圖形G于點D,連接AD,CD.(1)求證:AD=CD;(2)過點D作DEBA,垂足為E,作DFBC,垂足為F,延長DF交圖形G于點M,連接CM.若AD=CM,求直線DE與圖形G的公共點個數(shù).
參考答案一、選擇題(每小題3分,共30分)1、C【分析】先證明相似,然后再根據(jù)相似的性質(zhì)求解即可.【詳解】∵∥∴∵∴=故答案為:C.【點睛】本題考查了三角形相似的性質(zhì),即相似三角形的面積之比為相似比的平方.2、B【分析】先整理成一般式,然后根據(jù)定義找出即可.【詳解】方程化為一般形式為:,.故選:.【點睛】題考查了一元二次方程的一般形式,一元二次方程的一般形式為ax2+bx+c=0(a≠0).其中a是二次項系數(shù),b是一次項系數(shù),c是常數(shù)項.3、B【解析】解:∵E,F(xiàn)分別是正方形ABCD邊BC,CD的中點,∴CF=BE,在△ABE和△BCF中,∵AB=BC,∠ABE=∠BCF,BE=CF,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正確;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正確;根據(jù)題意得,F(xiàn)P=FC,∠PFB=∠BFC,∠FPB=90°.∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),則PB=2k在Rt△BPQ中,設(shè)QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin=∠BQP==,故③正確;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面積:△BCF的面積=1:5,∴S四邊形ECFG=4S△BGE,故④錯誤.故選B.點睛:本題主要考查了四邊形的綜合題,涉及正方形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)以及折疊的性質(zhì)的知識點,解決的關(guān)鍵是明確三角形翻轉(zhuǎn)后邊的大小不變,找準對應邊,角的關(guān)系求解.4、D【分析】根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=CD,根據(jù)等腰三角形的兩底角相等求出∠ADF=∠DAC,再表示出∠DAF,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和表示出∠AFD,然后分①∠ADF=∠DAF,②∠ADF=∠AFD,③∠DAF=∠AFD三種情況討論求解.【詳解】∵△ABC繞C點逆時針方向旋轉(zhuǎn)得到△DEC,∴AC=CD,∴∠ADF=∠DAC=(180°-α),∴∠DAF=∠DAC-∠BAC=(180°-α)-30°,根據(jù)三角形的外角性質(zhì),∠AFD=∠BAC+∠DCA=30°+α,△ADF是等腰三角形,分三種情況討論,①∠ADF=∠DAF時,(180°-α)=(180°-α)-30°,無解,②∠ADF=∠AFD時,(180°-α)=30°+α,解得α=40°,③∠DAF=∠AFD時,(180°-α)-30°=30°+α,解得α=20°,綜上所述,旋轉(zhuǎn)角α度數(shù)為20°或40°.故選:D.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),等邊對等角的性質(zhì),三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和的性質(zhì),難點在于要分情況討論.5、D【分析】根據(jù)等腰三角形的性質(zhì)、直角三角形的性質(zhì)和相似三角形的判定方法即可判定.【詳解】解:兩個直角三角形不一定相似,因為只有一個直角相等,∴A不一定相似;兩條邊對應成比例,一個對應角相等的兩個三角形不一定相似,因為這個對應角不一定是夾角;∴B不一定相似;有一個角為40°的兩個等腰三角形不一定相似,因為40°的角可能是頂角,也可能是底角,∴C不一定相似;有一個角為100°的兩個等腰三角形一定相似,因為100°的角只能是頂角,所以兩個等腰三角形的頂角和底角分別相等,∴D一定相似;故選:D.【點睛】本題考查了等腰三角形和直角三角形的性質(zhì)以及相似三角形的判定,屬于基礎(chǔ)題型,熟練掌握相似三角形的判定方法是關(guān)鍵.6、A【分析】利用點的平移進行解答即可.【詳解】解:∵拋物線向右平移4個單位長度后與拋物線重合∴將(-1,3)向右平移4個單位長度的點在拋物線上∴(3,3)在拋物線上故選:A【點睛】本題考查了點的平移與函數(shù)平移規(guī)律,掌握點的規(guī)律是解題的關(guān)鍵.7、D【解析】連接.,由切線的性質(zhì)可知,由四邊形內(nèi)角和可求出的度數(shù),根據(jù)圓周角定理(一條弧所對的圓周角等于它所對的圓心角的一半)可知的度數(shù).【詳解】解:連接.,∵.分別與相切于.兩點,∴,,∴,∴,∴.故選:D.【點睛】本題主要考查了圓的切線性質(zhì)及圓周角定理,靈活應用切線性質(zhì)及圓周角定理是解題的關(guān)鍵.8、C【解析】試題解析:從左邊看一個正方形被分成三部分,兩條分式是虛線,故C正確;故選C.考點:簡單幾何體的三視圖.9、A【分析】根據(jù)題意分別找到2層組合幾何體的最少個數(shù),相加即可.【詳解】解:底層正方體最少的個數(shù)應是3個,第二層正方體最少的個數(shù)應該是2個,因此這個幾何體最少有5個小正方體組成,故選:A.【點睛】本題考查三視圖相關(guān),解決本題的關(guān)鍵是利用“主視圖瘋狂蓋,左視圖拆違章”找到所需最少正方體的個數(shù)進行分析即可.10、C【分析】由于DE∥FG∥BC,那么△ADE△AFGABC,根據(jù)AD:AF:AB=1:2:4,可得出三個相似三角形的面積比,進而得出△ADE、四邊形DFGE、四邊形FBCG的面積比.【詳解】設(shè)△ADE的面積為a,則△AFG和△ABC的面積分別是4a、16a;則分別是3a、12a;則S△ADE:S四邊形DFGE:S四邊形FBCG=1:3:12故選C.【點睛】本題主要考察相似三角形,解題突破口是根據(jù)平行性質(zhì)推出△ADE△AFGABC.二、填空題(每小題3分,共24分)11、【分析】由n+1個邊長為1的等邊三角形有一條邊在同一直線上,則B,B1,B2,B3,…Bn在一條直線上,可作出直線BB1.易求得△ABC1的面積,然后由相似三角形的性質(zhì),易求得S1的值,同理求得S2的值,繼而求得Sn的值.【詳解】如圖連接BB1,B1B2,B2B3;由n+1個邊長為1的等邊三角形有一條邊在同一直線上,則B,B1,B2,B3,…Bn在一條直線上.∴S△ABC1=×1×=∵B
B1∥AC1,∴△BD1B1∽△AC1D1,△BB1C1為等邊三角形則C1D1=BD1=;,△C1B1D1中C1D1邊上的高也為;∴S1=××=;同理可得;則=,∴S2=××=;同理可得:;∴=,Sn=××=.【點睛】此題考查了相似三角形的判定與性質(zhì)以及等邊三角形的性質(zhì).此題難度較大,屬于規(guī)律性題目,注意輔助線的作法,注意數(shù)形結(jié)合思想的應用.12、10.5【解析】先證△AEB∽△ABC,再利用相似的性質(zhì)即可求出答案.【詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【點睛】本題考查了相似的判定和性質(zhì).利用相似的性質(zhì)列出含所求邊的比例式是解題的關(guān)鍵.13、10【分析】求得圓錐的母線的長利用勾股定理求得圓錐的高即可.【詳解】設(shè)圓錐的母線長為l,則=10π,解得:l=15,∴圓錐的高為:=10,故答案為:10.【點睛】考查了圓錐的計算,解題的關(guān)鍵是了解圓錐的底面周長等于圓錐的側(cè)面扇形的弧長,難度不大.14、②③.【分析】根據(jù)二次函數(shù)圖象的開口方向、對稱軸位置、與x軸的交點坐標等知識,逐個判斷即可.【詳解】由圖象可知,拋物線開口向下,a<0,對稱軸在y軸右側(cè),a、b異號,b>0,與y軸交于正半軸,c>0,所以abc<0,因此①是錯誤的;當y=0時,拋物線與x軸交點的橫坐標就是ax2+bx+c=0的兩根,由圖象可得x1=﹣1,x2=3;因此②正確;對稱軸為x=1,即﹣=1,也就是2a+b=0;因此③正確,∵a<0,a2>0,b>0,c>0,∴4a2+2b+c>0,因此④是錯誤的,故答案為:②③.【點睛】此題考查二次函數(shù)的圖象和性質(zhì),掌握a、b、c的值決定拋物線的位置以及二次函數(shù)與一元二次方程的關(guān)系,是正確判斷的前提.15、150個【分析】根據(jù)圖形的變化尋找規(guī)律即可求解.【詳解】觀察圖形的變化可知:當n為偶數(shù)時,第n個圖形中黑色正方形的數(shù)量為(n+)個;當n為奇數(shù)時,第n個圖形中黑色正方形的數(shù)量為(n+)個.所以第100個圖形中黑色正方形的數(shù)量是150個.故答案為150個.【點睛】本題難度系數(shù)較大,需要根據(jù)觀察得出奇偶數(shù)是不同情況,找出規(guī)律.16、1.6【解析】在同一時刻物高和影長成正比,即在同一時刻的兩個物體,影子,經(jīng)過物體頂部的太陽光線三者構(gòu)成的兩個直角三角形相似.【詳解】解:根據(jù)題意知,小紅的身高為150-30=120(厘米),設(shè)小紅的影長為x厘米則,解得:x=160,∴小紅的影長為1.6米,故答案為1.6【點睛】此題主要考查了平行投影,把實際問題抽象到相似三角形中,利用相似三角形的相似比,列出方程,通過解方程求出的影長,體現(xiàn)了方程的思想.17、-1【分析】連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F,通過角的計算找出∠AOE=∠COF,結(jié)合“∠AEO=90°,∠CFO=90°”可得出△AOE∽△COF,根據(jù)相似三角形的性質(zhì)得出比例式,再由tan∠CAB=2,可得出CF?OF的值,進而得到k的值.【詳解】如圖,連接OC,過點A作AE⊥x軸于點E,過點C作CF⊥y軸于點F.∵由直線AB與反比例函數(shù)y的對稱性可知A、B點關(guān)于O點對稱,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠AOF=90°,∠AOF+∠COF=90°,∴∠AOE=∠COF.又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴,∵tan∠CAB2,∴CF=2AE,OF=2OE.又∵AE?OE=2,CF?OF=|k|,∴|k|=CF?OF=2AE×2OE=4AE×OE=1,∴k=±1.∵點C在第二象限,∴k=﹣1.故答案為:﹣1.【點睛】本題考查了反比例函數(shù)圖象上點的坐標特征、反比例函數(shù)的性質(zhì)以及相似三角形的判定及性質(zhì),解答本題的關(guān)鍵是求出CF?OF=1.解答該題型題目時,巧妙的利用了相似三角形的性質(zhì)找出對應邊的比例,再結(jié)合反比例函數(shù)圖象上點的坐標特征找出結(jié)論.18、【分析】連接OD,求得AB的長度,可以推知OA和OD的長度,然后由角平分線的性質(zhì)求得∠AOD=90°;最后由扇形的面積公式、三角形的面積公式可以求得,陰影部分的面積=.【詳解】解:連接,∵為的直徑,∴,∵,∴,∴,∵平分,,∴,∴,∴,∴,∴陰影部分的面積.故答案為:.【點睛】本題綜合考查了圓周角定理、含30度角的直角三角形以及扇形面積公式.三、解答題(共66分)19、(1);(2)【分析】(1)根據(jù)概率公式求概率即可;(2)寫出小明做這3道題,所有可能出現(xiàn)的等可能的結(jié)果,然后根據(jù)概率公式求概率即可.【詳解】解:(1)∵第一題可以寫A或B,共2種結(jié)果,其中作對的可能只有1種,∴小明做對第1題的概率是1÷2=故答案為;(2)小明做這3道題,所有可能出現(xiàn)的結(jié)果有:,,,,,,,,共有8種,它們出現(xiàn)的可能性相同,所有的結(jié)果中,滿足“這3道題全做對”(記為事件)的結(jié)果只有1種,∴小明這3道題全做對的概率為1÷8=.【點睛】此題考查的是求概率問題,掌握概率公式是解決此題的關(guān)鍵.20、(1)證明見解析;(2)當∠DOE=90°時,四邊形BFED為菱形,理由見解析.【解析】試題分析:(1)利用平行四邊形的性質(zhì)以及全等三角形的判定方法得出△DOE≌△BOF(ASA);(2)首先利用一組對邊平行且相等的四邊形是平行四邊形得出四邊形EBFD是平行四邊形,進而利用垂直平分線的性質(zhì)得出BE=ED,即可得出答案.試題解析:(1)∵在?ABCD中,O為對角線BD的中點,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)當∠DOE=90°時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90°,∴EF⊥BD,∴四邊形BFDE為菱形.考點:平行四邊形的性質(zhì);全等三角形的判定與性質(zhì);菱形的判定.21、(2)(2,0);(2)0≤x≤2;(3)(3,﹣4)或(3+2,4)或(3﹣2,4)【分析】(2)根據(jù)已知條件將A點、C點代入拋物線即可求解;(2)觀察直線在拋物線上方的部分,根據(jù)拋物線與直線的交點坐標即可求解;(3)先設(shè)動點M的坐標,再根據(jù)兩個三角形的面積關(guān)系即可求解.【詳解】(2)因為直線y=﹣2x+2與x軸、y軸分別交于A,C兩點,所以當x=0時,y=2,所以C(0,2)當y=0時,x=2,所以A(2,0)因為拋物線y=x2+bx+c經(jīng)過A,C兩點,所以c=2,2+b+2=0,解得b=﹣6,所以拋物線解析式為y=x2﹣6x+2.當y=0時,0=x2﹣6x+2.解得x2=2,x2=2.所以B點坐標為(2,0).答:拋物線解析式為y=x2﹣6x+2,B點坐標為(2,0);(2)觀察圖象可知:x2+bx+c≤﹣2x+2的解集是0≤x≤2.故答案為0≤x≤2.(3)設(shè)M(m,m2﹣6m+2)因為S△ABM=S△ABC=×4×2=3.所以×4?|m2﹣6m+2|=3所以|m2﹣6m+2|=±4.所以m2﹣6m+9=0或m2﹣6m+2=0解得m2=m2=3或m=3±2.所以M點的坐標為(3,﹣4)或(3+2,4)或(3﹣2,4).答:此時點M的坐標為(3,﹣4)或(3+2,4)或(3﹣2,4).【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式,二次函數(shù)與不等式,三角形的面積等,熟練掌握相關(guān)知識是解題的關(guān)鍵.22、(1)拋物線與軸有兩個交點;(2)拋物線的頂點不會落在第四象限,理由詳見解析;(3).【分析】(1)將,代入解析式,然后求當y=0時,一元二次方程根的情況,從而求解;(2)首先利用配方法求出頂點坐標,解法一:假設(shè)頂點在第四象限,根據(jù)第四象限點的坐標特點列不等式組求解;解法二:設(shè),,則,分析一次函數(shù)圖像所經(jīng)過的象限,從而求解;(3)將點代入拋物線,求得a的值,然后求得拋物線解析式及頂點坐標,分別表示出A,B兩點坐標,并根據(jù)點A位于第三象限求得t的取值范圍,利用勾股定理求得的函數(shù)解析式,從而求解.【詳解】解:(1)依題意,將,代入解析式得拋物線的解析式為.令,得,,∴拋物線與軸有兩個交點.(2)拋物線的頂點不會落在第四象限.依題意,得拋物線的解析式為,∴頂點坐標為.解法一:不妨假設(shè)頂點坐標在第四象限,則,解得.∴該不等式組無解,∴假設(shè)不成立,即此時拋物線的頂點不會落在第四象限.解法二:設(shè),,則,∴該拋物線的頂點在直線上運動,而該直線不經(jīng)過第四象限,∴拋物線的頂點不會落在第四象限.(3)將點代入拋物線:,得,化簡,得.∵,∴,即,∴此時,拋物線的解析式為,∴頂點坐標為.當時,,∴.當時,,∴.∵點在第三象限,∴∴.又,,∴點在點的右上方,∴.∵,∴當時,隨的增大而增大,∴.又.∵,∴隨的增大而增大,∴.【點睛】本題屬于二次函數(shù)綜合題,綜合性較強,掌握二次函數(shù)的圖像性質(zhì)利用屬性結(jié)合思想解題是本題的解題關(guān)鍵.23、(1)-3;(2)﹣3<x<﹣1;(3)k≥﹣4且k≠1.【分析】(1)把點A坐標代入一次函數(shù)關(guān)系式可求出a的值,確定點A的坐標,再代入反比例函數(shù)關(guān)系式可求出k的值,(2)一次函數(shù)與反比例函數(shù)聯(lián)立,可求出交點B的坐標,再根據(jù)圖象可得出當y1>y2時,x的取值范圍.(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,就是x2+4x﹣k=1有實數(shù)根,根據(jù)根的判別式求出k的取值范圍.【詳解】(1)一次函數(shù)y1=x+4的圖象過A(﹣1,a),∴a=﹣1+4=3,∴A(﹣1,3)代入反比例函數(shù)y2=得,k=﹣3;(2)由(1)得反比例函數(shù),由題意得,,解得,,,∴點B(﹣3,1)當y1>y2,即一次函數(shù)的圖象位于反比例函數(shù)圖象上方時,自變量的取值范圍為:﹣3<x<﹣1;(3)若反比例函數(shù)y2=與一次函數(shù)y1=x+4的圖象總有交點,即,方程=x+4有實數(shù)根,也就是x2+4x﹣k=1有實數(shù)根,∴16+4k≥1,解得,k≥﹣4,∵k≠1,∴k的取值范圍為:k≥﹣4且k≠1.【點睛】此題考查待定系數(shù)法求函數(shù)解析式,函數(shù)圖象與二元一次方程組的關(guān)系,一次函數(shù)與反比例函數(shù)交點的確定,正確理解題意是解題的關(guān)鍵.24、(I)12π;(Ⅱ)D′E=6﹣6;(Ⅲ)1﹣1≤DF≤1+1.【分析】(Ⅰ)根據(jù)正方形的性質(zhì)得到AD=CD=6,∠D=90°,由勾股定理得到AC=6,根據(jù)弧長的計算公式和扇形的面積公式即可得到結(jié)論;(Ⅱ)連接BC′,根據(jù)題意得到B在對角線AC′上,根據(jù)勾股定理得到AC′==6,求得BC′=6﹣6,推出△BC′E是等腰直角三角形,得到C′E=BC′=12﹣6,于是得到結(jié)論;(Ⅲ)如圖1,連接DB,AC相交于點O,則O是DB的中點,根據(jù)三角形中位線定理得到FO=AB′=1,推出F在以O(shè)為圓心,1為半徑的圓上運動,于是得到結(jié)論.【詳解】解:(Ⅰ)∵四邊形ABCD是正方形,∴AD=CD=6,∠D=90°,∴AC=6,∵邊長為6的正方形ABCD繞點A順時針旋轉(zhuǎn),得正方形AB′C′D′,∴∠CAC′=60°,∴的長度==2π,線段AC掃過的扇形面積==12π;(Ⅱ)解:如圖2,連接BC′,∵旋轉(zhuǎn)角
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 湖鹽脫水工崗前節(jié)能考核試卷含答案
- 棕草編織工安全文明模擬考核試卷含答案
- 筒并搖工班組協(xié)作能力考核試卷含答案
- 汽車涂裝生產(chǎn)線操作工安全檢查強化考核試卷含答案
- 梅乙艾知識培訓
- 海關(guān)行政處罰培訓
- 酒店員工請假與出差制度
- 酒店客用物品損壞賠償制度
- 財務合同管理與審查制度
- 食品購銷合同模板
- T-CSTM 00394-2022 船用耐火型氣凝膠復合絕熱制品
- 滬教版6年級上冊數(shù)學提高必刷題(有難度) (解析)
- DBJ50-T-086-2016重慶市城市橋梁工程施工質(zhì)量驗收規(guī)范
- 固態(tài)電池及固態(tài)電池的制造方法培訓課件
- 川農(nóng)畢業(yè)論文開題報告
- UL1012標準中文版-2018非二類變壓器UL中文版標準
- sqe主管述職報告
- 出納常用表格大全
- 《頭暈與眩暈診斷》課件
- 2022年江蘇職教高考市場營銷試卷
- 計量器具-GRR分析表格
評論
0/150
提交評論