版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
黑龍江省齊齊哈爾市昂溪區(qū)2025屆數(shù)學(xué)九上期末調(diào)研試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.反比例函數(shù)與正比例函數(shù)在同一坐標(biāo)系中的大致圖象可能是()A. B.C. D.2.如圖,△ABC與△A′B′C′是位似圖形,PB′=BB′,A′B′=2,則AB的長為()A.1 B.2 C.4 D.83.在平面直角坐標(biāo)系中,點,,過第四象限內(nèi)一動點作軸的垂線,垂足為,且,點、分別在線段和軸上運動,則的最小值是()A. B. C. D.4.已知⊙O的半徑為4,圓心O到弦AB的距離為2,則弦AB所對的圓周角的度數(shù)是()A.30° B.60°C.30°或150° D.60°或120°5.如果5x=6y,那么下列結(jié)論正確的是()A. B. C. D.6.如圖,Rt△ABC中,∠B=90°,AB=3,BC=2,則cosA=()A. B. C. D.7.一5的絕對值是()A.5 B. C. D.-58.在同一時刻,兩根長度不等的竿子置于陽光之下,而它們的影長相等,那么這兩根竿子的相對位置是()A.兩根都垂直于地面 B.兩根平行斜插在地上 C.兩根不平行 D.兩根平行倒在地上9.如圖,四邊形ABCD內(nèi)接于⊙O,AB是直徑,OD∥BC,∠ABC=40°,則∠BCD的度數(shù)為()A.80° B.90° C.100° D.110°10.已知一次函數(shù)y=kx+b的圖象如圖,那么正比例函數(shù)y=kx和反比例函數(shù)y=在同一坐標(biāo)系中的圖象的形狀大致是()A. B.C. D.11.若將半徑為12cm的半圓形紙片圍成一個圓錐的側(cè)面,則這個圓錐的底面圓半徑是()A.2cm B.3cm C.4cm D.6cm12.如果將拋物線y=x2向上平移1個單位,那么所得拋物線對應(yīng)的函數(shù)關(guān)系式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2 D.y=(x﹣1)2二、填空題(每題4分,共24分)13.如圖,河壩橫斷面迎水坡AB的坡比是1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),壩高BC=3m,則坡面AB的長度是.14.如圖AC,BD是⊙O的兩條直徑,首位順次連接A,B,C,D得到四邊形ABCD,若AD=3,∠BAC=30°,則圖中陰影部分的面積是______.15.使代數(shù)式有意義的實數(shù)x的取值范圍為_____.16.已知點P(x1,y1)和Q(2,y2)在二次函數(shù)y=(x+k)(x﹣k﹣2)的圖象上,其中k≠0,若y1>y2,則x1的取值范圍為_____.17.在直徑為4cm的⊙O中,長度為的弦BC所對的圓周角的度數(shù)為____________.18.若點在反比例函數(shù)的圖像上,則______.三、解答題(共78分)19.(8分)如圖,在△ABC中,∠C=90°,以AC為直徑的⊙O交AB于點D,連接OD,點E在BC上,BE=DE.(1)求證:DE是⊙O的切線;(2)若BC=6,求線段DE的長;(3)若∠B=30°,AB=8,求陰影部分的面積(結(jié)果保留).20.(8分)如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點(1)求b,k的值;(2)若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍;(3)將直線y=﹣x+b向下平移m個單位,當(dāng)直線與雙曲線沒有交點時,求m的取值范圍.21.(8分)萬州區(qū)某民營企業(yè)生產(chǎn)的甲、乙兩種產(chǎn)品,已知2件甲商品的出廠總價與3件乙商品的出廠總價相同,3件甲商品的出廠總價比2件乙商品的出廠總價多150元.(1)求甲、乙商品的出廠單價分別是多少元?(2)為促進萬州經(jīng)濟持續(xù)健康發(fā)展,為商家搭建展示平臺,為行業(yè)創(chuàng)造交流機會,2019年萬州區(qū)舉辦了多場商品展銷會.外地一經(jīng)銷商計劃購進甲商品200件,購進乙商品的數(shù)量是甲的4倍,恰逢展銷會期間該企業(yè)正在對甲商品進行降價促銷活動,甲商品的出廠單價降低了,該經(jīng)銷商購進甲的數(shù)量比原計劃增加了,乙的出廠單價沒有改變,該經(jīng)銷商購進乙的數(shù)量比原計劃減少了,結(jié)果該經(jīng)銷商付出的總貨款與原計劃的總貨款恰好相同,求的值.22.(10分)如圖1,為等腰三角形,是底邊的中點,腰與相切于點,底交于點,.(1)求證:是的切線;(2)如圖2,連接,交于點,點是弧的中點,若,,求的半徑.23.(10分)計算:sin45°+2cos30°﹣tan60°24.(10分)某工廠設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):銷售單價(元/件)…30405060…每天銷售量(件)…500400300200…(1)研究發(fā)現(xiàn),每天銷售量與單價滿足一次函數(shù)關(guān)系,求出與的關(guān)系式;(2)當(dāng)?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?25.(12分)問題背景:如圖1設(shè)P是等邊△ABC內(nèi)一點,PA=6,PB=8,PC=10,求∠APB的度數(shù).小君研究這個問題的思路是:將△ACP繞點A逆時針旋轉(zhuǎn)60°得到△ABP',易證:△APP'是等邊三角形,△PBP'是直角三角形,所以∠APB=∠APP'+∠BPP'=150°.簡單應(yīng)用:(1)如圖2,在等腰直角△ABC中,∠ACB=90°.P為△ABC內(nèi)一點,且PA=5,PB=3,PC=2,則∠BPC=°.(2)如圖3,在等邊△ABC中,P為△ABC內(nèi)一點,且PA=5,PB=12,∠APB=150°,則PC=.拓展廷伸:(3)如圖4,∠ABC=∠ADC=90°,AB=BC.求證:BD=AD+DC.(4)若圖4中的等腰直角△ABC與Rt△ADC在同側(cè)如圖5,若AD=2,DC=4,請直接寫出BD的長.26.如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?
參考答案一、選擇題(每題4分,共48分)1、A【分析】分a>0和a<0兩種情況,根據(jù)反比例函數(shù)與正比例函數(shù)的圖象的性質(zhì)判斷即可.【詳解】解:當(dāng)a>0時,反比例函數(shù)圖象在一、三象限,正比例函數(shù)圖象經(jīng)過一、二、三象限;當(dāng)a<0,反比例函數(shù)圖象在二、四象限,正比例函數(shù)圖象經(jīng)過二、三、四象限.故選:A.【點睛】本題考查的知識點是反比例函數(shù)與正比例函數(shù)圖象的性質(zhì),熟記性質(zhì)內(nèi)容是解此題的關(guān)鍵.2、C【分析】根據(jù)位似圖形的對應(yīng)邊互相平行列式計算,得到答案.【詳解】∵△ABC與△A′B′C′是位似圖形,∴A′B′∥AB,∴△PA′B′∽△PAB,∴==,∴AB=4,故選:C.【點睛】本題考查的是位似變換的概念、相似三角形的性質(zhì),掌握如果兩個圖形不僅是相似圖形,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,那么這樣的兩個圖形叫做位似圖形是解題的關(guān)鍵.3、B【分析】先求出直線AB的解析式,再根據(jù)已知條件求出點C的運動軌跡,由一次函數(shù)的圖像及性質(zhì)可知:點C的運動軌跡和直線AB平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,然后利用銳角三角函數(shù)求MN即可求出CE.【詳解】解:設(shè)直線AB的解析式為y=ax+b(a≠0)將點,代入解析式,得解得:∴直線AB的解析式為設(shè)C點坐標(biāo)為(x,y)∴CD=x,OD=-y∵∴整理可得:,即點C的運動軌跡為直線的一部分由一次函數(shù)的性質(zhì)可知:直線和直線平行,過點C作CE⊥AB交x軸于P,交AB于E,過點M(0,-3)作MN⊥AB于N根據(jù)垂線段最短和平行線之間的距離處處相等,可得此時CE即為的最小值,且MN=CE,如圖所示在Rt△AOB中,AB=,sin∠BAO=在Rt△AMN中,AM=6,sin∠MAN=∴CE=MN=,即的最小值是.故選:B.【點睛】此題考查的是一次函數(shù)的圖像及性質(zhì)、動點問題和解直角三角形,掌握用待定系數(shù)法求一次函數(shù)的解析式、一次函數(shù)的圖像及性質(zhì)、垂線段最短和平行線之間的距離處處相等是解決此題的關(guān)鍵.4、D【分析】根據(jù)題意作出圖形,利用三角形內(nèi)角和以及根據(jù)圓周角定理和圓內(nèi)接四邊形的性質(zhì)進行分析求解.【詳解】解:如圖,∵OH⊥AB,OA=OB=4,∴∠AHO=90°,在Rt△OAH中,sin∠OAH=∴∠OAH=30°,∴∠AOB=180°-30°-30°=120°,∴∠ACB=∠AOB=60°,∠ADB=180°-∠ACB=120°(圓內(nèi)接四邊形的性質(zhì)),即弦AB所對的圓周角的度數(shù)是60°或120°.故選:D.【點睛】本題考查圓周角定理,圓周角定理即在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.5、A【解析】試題解析:A,可以得出:故選A.6、D【分析】根據(jù)勾股定理求出AC,根據(jù)余弦的定義計算得到答案.【詳解】由勾股定理得,AC===,則cosA===,故選:D.【點睛】本題考查的是銳角三角函數(shù)的定義,掌握銳角A的鄰邊b與斜邊c的比叫做∠A的余弦是解題的關(guān)鍵.7、A【解析】試題分析:根據(jù)數(shù)軸上某個數(shù)與原點的距離叫做這個數(shù)的絕對值的定義,在數(shù)軸上,點﹣5到原點的距離是5,所以﹣5的絕對值是5,故選A.8、C【分析】在不同時刻,同一物體的影子方向和大小可能不同,不同時刻物體在太陽光下的影子的大小在變,方向也在變,依此進行分析.【詳解】在同一時刻,兩根竿子置于陽光下,但看到他們的影長相等,那么這兩根竿子的頂部到地面的垂直距離相等,而竿子長度不等,故兩根竿子不平行,故答案選擇C.【點睛】本題考查投影的相關(guān)知識,解決此題的關(guān)鍵是掌握平行投影的特點.9、D【分析】根據(jù)平行線的性質(zhì)求出∠AOD,根據(jù)等腰三角形的性質(zhì)求出∠OAD,根據(jù)圓內(nèi)接四邊形的性質(zhì)計算即可.【詳解】∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四邊形ABCD內(nèi)接于⊙O,∴∠BCD=180°-∠OAD=110°,故選:D.【點睛】本題考查的是圓內(nèi)接四邊形的性質(zhì)、平行線的性質(zhì),掌握圓內(nèi)接四邊形的對角互補是解題的關(guān)鍵.10、C【解析】試題分析:如圖所示,由一次函數(shù)y=kx+b的圖象經(jīng)過第一、三、四象限,可得k>1,b<1.因此可知正比例函數(shù)y=kx的圖象經(jīng)過第一、三象限,反比例函數(shù)y=的圖象經(jīng)過第二、四象限.綜上所述,符合條件的圖象是C選項.故選C.考點:1、反比例函數(shù)的圖象;2、一次函數(shù)的圖象;3、一次函數(shù)圖象與系數(shù)的關(guān)系11、D【解析】解:圓錐的側(cè)面展開圖的弧長為2π×12÷2=12π(cm),∴圓錐的底面半徑為12π÷2π=6(cm),故選D.12、A【分析】根據(jù)向上平移縱坐標(biāo)加求出平移后的拋物線的頂點坐標(biāo),然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線y=x2向上平移1個單位后的頂點坐標(biāo)為(0,1),∴所得拋物線對應(yīng)的函數(shù)關(guān)系式是y=x2+1.故選:A.【點睛】本題考查二次函數(shù)的平移,利用數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.二、填空題(每題4分,共24分)13、6米.【解析】試題分析:在Rt△ABC中,已知坡面AB的坡比以及鉛直高度BC的值,通過解直角三角形即可求出斜面AB的長.試題解析:在Rt△ABC中,BC=3米,tanA=1:;∴AC=BC÷tanA=3米,∴AB=米.考點:解直角三角形的應(yīng)用.14、【分析】首先證明△BOC是等邊三角形及△OBC≌△AOD(SAS),進而得出S△AOD=S△DOC=S△BOC=S△AOB,得到S陰=2?S扇形OAD,再利用扇形的面積公式計算即可;【詳解】解:∵AC是直徑,
∴∠ABC=∠ADC=90°,
∵∠BAC=30°,AD=3,
∴AC=2AD=6,∠ACB=60°,∴OA=OC=3,
∵OC=OB=OA=OD,
∴△OBC與△AOD是等邊三角形,
∴∠BOC=∠AOD=60°,∴△OBC≌△AOD(SAS)又∵O是AC,BD的中點,
∴S△AOD=S△DOC=S△BOC=S△AOB,
∴S陰=2?S扇形OAD=,故答案為:.【點睛】本題考查扇形的面積公式、解直角三角形、等邊三角形的判定和性質(zhì)等知識,解題的關(guān)鍵是學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.15、【分析】根據(jù)二次根式有意義的條件得出即可求解.【詳解】若代數(shù)式有意義,則,解得:,即實數(shù)x的取值范圍為.故填:【點睛】本題考查二次根式有意義的條件,熟練掌握二次根式有意義即根號內(nèi)的式子要大于等于零是關(guān)鍵.16、x1>2或x1<1.【分析】將二次函數(shù)的解析式化為頂點式,然后將點P、Q的坐標(biāo)代入解析式中,然后y1>y2,列出關(guān)于x1的不等式即可求出結(jié)論.【詳解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵點P(x1,y1)和Q(2,y2)在二次函數(shù)y=(x+k)(x﹣k﹣2)的圖象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<1.故答案為:x1>2或x1<1.【點睛】此題考查的是比較二次函數(shù)上兩點之間的坐標(biāo)大小關(guān)系,掌握二次函數(shù)的頂點式和根據(jù)函數(shù)值的取值范圍求自變量的取值范圍是解決此題的關(guān)鍵.17、60°或120°【分析】如下圖所示,分兩種情況考慮:D點在優(yōu)弧CDB上或E點在劣弧BC上時,根據(jù)三角函數(shù)可求出∠OCF的大小,進而求出∠BOC的大小,再由圓周角定理可求出∠D、∠E大小,進而得到弦BC所對的圓周角.【詳解】解:分兩種情況考慮:D在優(yōu)弧CDB上或E在劣弧BC上時,可得弦BC所對的圓周角為∠D或∠E,如下圖所示,作OF⊥BC,由垂徑定理可知,F(xiàn)為BC的中點,∴CF=BF=BC=,又直徑為4cm,∴OC=2cm,在Rt△AOC中,cos∠OCF=,∴∠OCF=30°,∵OC=OB,∴∠OCF=∠OBF=30°,∴∠COB=120°,∴∠D=∠COB=60°,又圓內(nèi)接四邊形的對角互補,∴∠E=120°,則弦BC所對的圓周角為60°或120°.故答案為:60°或120°.【點睛】此題考查了圓周角定理,圓內(nèi)接四邊形的性質(zhì),銳角三角函數(shù)定義,以及特殊角的三角函數(shù)值,熟練掌握圓周角定理是解本題的關(guān)鍵.18、-1【解析】將點代入反比例函數(shù),即可求出m的值.【詳解】解:將點代入反比例函數(shù)得:.故答案為:-1.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標(biāo)特征,只要點在函數(shù)的圖象上,就一定滿足函數(shù)的解析式三、解答題(共78分)19、(1)詳見解析;(2)3;(3)【分析】(1)根據(jù)OA=OD,BE=DE,得∠A=∠1,∠B=∠2,根據(jù)∠ACB=90°,即可得∠1+∠2=90°,即可得OD⊥DE,從而可證明結(jié)論;(2)連接CD,根據(jù)現(xiàn)有條件推出CE是⊙O的切線,再結(jié)合DE是⊙O的切線,推出DE=CE又BE=DE,即可得出DE;(3)過O作OG⊥AD,垂足為G,根據(jù)已知條件推出AD,AG和OG的值,再根據(jù),即可得出答案.【詳解】解:(1)證明:∵OA=OD,BE=DE,∴∠A=∠1,∠B=∠2,∵△ABC中,∠ACB=90°,∴∠A+∠B=90°,∴∠1+∠2=90°,∴∠ODE=180°-(∠1+∠2)=90°,∴OD⊥DE,又OD為⊙O的半徑,∴DE是⊙O的切線;(2)連接CD,則∠ADC=90°,∵∠ACB=90°,∴AC⊥BC,又AC為⊙O的直徑,∴CE是⊙O的切線,又DE是⊙O的切線,∴DE=CE又BE=DE,∴DE=CE=BE=;(3)過O作OG⊥AD,垂足為G,則,∵Rt△ABC中,∠B=30°,AB=8,∴AC=,∠A=60°(又OA=OD),∴∠COD=120°,△AOD為等邊三角形,∴AD=AO=OD=2,∴,∴OG,∴,∴陰影部分的面積為.【點睛】本題考查了圓的切線的性質(zhì)和判定,三角函數(shù)和等邊三角形的性質(zhì),掌握知識點是解題關(guān)鍵.20、(2)b=5,k=4;(2);(3)2<m<2.【分析】(2)把B(4,2)分別代入y=﹣x+b和y=,即可得到b,k的值;(2)根據(jù)反比例函數(shù)的性質(zhì),即可得到函數(shù)值y的取值范圍;(3)將直線y=﹣x+5向下平移m個單位后解析式為y=﹣x+5﹣m,依據(jù)﹣x+5﹣m=,可得△=(m﹣5)2﹣26,當(dāng)直線與雙曲線只有一個交點時,根據(jù)△=0,可得m的值.【詳解】解:(2)∵直線y=﹣x+b過點B(4,2),∴2=﹣4+b,解得b=5,∵反比例函數(shù)y=的圖象過點B(4,2),∴k=4;(2)∵k=4>0,∴當(dāng)x>0時,y隨x值增大而減小,∴當(dāng)2≤x≤6時,≤y≤2;(3)將直線y=﹣x+5向下平移m個單位后解析式為y=﹣x+5﹣m,設(shè)直線y=﹣x+5﹣m與雙曲線y=只有一個交點,令﹣x+5﹣m=,整理得x2+(m﹣5)x+4=0,∴△=(m﹣5)2﹣26=0,解得m=2或2.∴直線與雙曲線沒有交點時,2<m<2.【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)交點問題,一次函數(shù)圖象與幾何變換以及一元二次方程根與系數(shù)的關(guān)系的運用,解題時注意:求反比例函數(shù)與一次函數(shù)的交點坐標(biāo),把兩個函數(shù)關(guān)系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.21、(1)甲、乙商品的出廠單價分別是90、60元;(2)的值為15.【分析】(1)設(shè)甲、乙商品的出廠單價分別是、元,根據(jù)價格關(guān)系和總價相同建立方程組求解即可;(2)分別表示出實際購進數(shù)量和實際單價,利用單價×數(shù)量=總價,表示出甲乙的總價,再根據(jù)實際總貨款與原計劃相等建立方程求解.【詳解】解:(1)設(shè)甲、乙商品的出廠單價分別是、元,則,解得.答:甲、乙商品的出廠單價分別是90、60元.(2)由題意得:,解得:(舍去),.答:的值為15.【點睛】本題考查二元一次方程組和一元二次方程的應(yīng)用,熟練掌握等量關(guān)系,建立方程是解題的關(guān)鍵.22、(1)證明見解析;(2)的半徑為2.1.【分析】(1)連接,,過作于點,根據(jù)三線合一可得,然后根據(jù)角平分線的性質(zhì)可得,然后根據(jù)切線的判定定理即可證出結(jié)論;(2)連接,過作于點,根據(jù)平行線的判定證出,證出,根據(jù)角平分線的性質(zhì)可得,然后利用HL證出,從而得出,設(shè)的半徑為,根據(jù)勾股定理列出方程即可求出結(jié)論.【詳解】(1)證明:如圖,連接,,過作于點.∵,是底邊的中點,∴,∵是的切線,∴,∴.∴是的切線;(2)解:如圖2,連接,過作于點.∵點是的中點,∴,∴∴,∴在和中,∴∴設(shè)的半徑為由勾股定理得:DK2+OK2=OD2即,解得:.∴的半徑為.【點睛】此題考查的是等腰三角形的性質(zhì)、角平分線的性質(zhì)、切線的判定及性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理,掌握等腰三角形的性質(zhì)、角平分線的性質(zhì)、切線的判定及性質(zhì)、全等三角形的判定及性質(zhì)和勾股定理是解決此題的關(guān)鍵.23、1【分析】根據(jù)特殊角的三角函數(shù)值計算即可求出值.【詳解】解:原式=×+2×﹣=1.【點睛】本題考查了特殊角的三角函數(shù)值、二次根式的運算,解決本題的關(guān)鍵是熟練掌握特殊角的銳角函數(shù)值.24、(1)y=﹣10x+800;(2)單價定為40元/件時,工藝廠試銷該工藝品每天獲得的利潤8000元【分析】(1)直接利用待定系數(shù)法求解可得;(2)根據(jù)“總利潤單件利潤銷售量”可得關(guān)于的一元二次方程,解之即可得.【詳解】解:(1)設(shè)y=kx+b,根據(jù)題意可得,解得:,每天銷售量與單價的函數(shù)關(guān)系為:y=﹣10x+800,(2)根據(jù)題意,得:(x﹣20)(﹣10x+800)=8000,整理,得:x2﹣100x+2400=0,解得:x1=40,x2=60,∵銷售單價最高不能超過45元/件,∴x=40,答:銷售單價定為40元/件時,工藝廠試銷該工藝品每天獲得的利潤8000元.【點睛】本題主要考查了一次函數(shù)及一元二次方程的應(yīng)用,解題的關(guān)鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及找到題目蘊含的相等關(guān)系.25、(1)135;(2)13;(3)見解析;(4)【分析】簡單應(yīng)用:(1)先利用旋轉(zhuǎn)得出BP'=AP=5,∠PCP'=90°,CP'=CP=2,再根據(jù)勾股定理得出PP'=CP=4,最后用勾股定理的逆定理得出△BPP'是以BP'為斜邊的直角三角形,即可得出結(jié)論;(2)同(1)的方法得出∠APP'=60°,進而得出∠BPP'=∠APB﹣∠APP'=90°,最后用勾股定理即可得出結(jié)論;拓展廷伸:(3)先利用旋轉(zhuǎn)得出BD'=BD,CD'=AD,∠BCD'=∠BAD,再判斷出點D'在DC的延長線上,最后用勾股定理即可得出結(jié)論;(4)先利用旋轉(zhuǎn)得出BD'=BD,CD=AD',∠DBD'=90°,∠BCD=∠BAD',再判斷出點D'在AD的延長線上,最后用勾股定理即可得出結(jié)論.【詳解】解:簡單應(yīng)用:(1)如圖2,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,將△ACP繞點C逆時針旋轉(zhuǎn)90°得到△CBP',連接PP',∴BP'=AP=5,∠PCP'=90°,CP'=CP=2,∴∠CPP'=∠CP'P=45°,根據(jù)勾股定理得,PP'=CP=4,∵BP'=5,BP=3,∴PP'2+BP2=BP',∴△BPP'是以BP'為斜邊的直角三角形,∴∠BPP'=90°,∴∠BPC=∠BPP'+∠CPP'=135°,故答案為:135;(2)如圖3,∵△ABC是等邊三角形,∴∠BAC=60°,A
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 會議提案與決策實施制度
- 財務(wù)費用報銷與審批制度
- 辦公室員工培訓(xùn)經(jīng)費使用制度
- 辦公室出差經(jīng)費報銷制度
- 2026年渝中區(qū)大坪街道社區(qū)衛(wèi)生服務(wù)中心招聘醫(yī)保備考題庫科職員備考題庫參考答案詳解
- 2026年珠海城市職業(yè)技術(shù)學(xué)院招聘備考題庫及參考答案詳解1套
- 養(yǎng)老院入住老人財產(chǎn)管理制度
- 2026年武義縣應(yīng)急管理局招聘備考題庫及答案詳解1套
- 中國金融電子化集團有限公司2026年度校園招聘備考題庫完整參考答案詳解
- 公共交通車輛安全檢查制度
- 養(yǎng)老護理員燙傷
- 交通運輸行業(yè)安全生產(chǎn)規(guī)章制度
- EHS(環(huán)境健康安全)管理制度
- 期末 (試題) -2024-2025學(xué)年外研版(三起)(2024)英語三年級上冊
- 小區(qū)保潔服務(wù)投標(biāo)方案(技術(shù)方案)
- DB53∕T 1269-2024 改性磷石膏用于礦山廢棄地生態(tài)修復(fù)回填技術(shù)規(guī)范
- GB/T 44373-2024智能網(wǎng)聯(lián)汽車術(shù)語和定義
- 《建筑玻璃膜應(yīng)用技術(shù)規(guī)程 JGJT351-2015》
- 組織行為學(xué)考試題(附參考答案)
- 水產(chǎn)養(yǎng)殖合作協(xié)議合同
- 藥店全年主題活動方案設(shè)計
評論
0/150
提交評論