山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一_第1頁(yè)
山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一_第2頁(yè)
山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一_第3頁(yè)
山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一_第4頁(yè)
山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一_第5頁(yè)
已閱讀5頁(yè),還剩25頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE30-山東省濰坊高密市2025屆高三數(shù)學(xué)模擬試題一一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,,則()A. B. C. D.2.已知為虛數(shù)單位,復(fù)數(shù)滿意,則的共軛復(fù)數(shù)為()A. B. C. D.3.已知兩個(gè)力,作用于平面內(nèi)某靜止物體同一點(diǎn)上,為使該物體仍保持靜止,還需給該物體同一點(diǎn)上再加上一個(gè)力,()A. B. C. D.4.若,則()A. B. C. D.5.函數(shù)大致圖象是()A. B.C. D.6.已知,,且,則的最小值為()A.100 B.81 C.36 D.97.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=A. B.C. D.8.已知,,,記為,,中不同數(shù)字的個(gè)數(shù),如:,,,則全部的的排列所得的的平均值為()A. B.3 C. D.4二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得3分,有選錯(cuò)的得0分.9.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱,旨在主動(dòng)發(fā)展我國(guó)與沿線國(guó)家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包涵的命運(yùn)共同體.自2013年以來(lái),“一帶一路”建設(shè)成果顯著下圖是2013-2025年,我國(guó)對(duì)“一帶一路”沿線國(guó)家進(jìn)出口狀況統(tǒng)計(jì)圖,下列描述正確的是().A.這五年,2013年出口額最少B.這五年,出口總額比進(jìn)口總額多C.這五年,出口增速前四年逐年下降D.這五年,2024年進(jìn)口增速最快10.關(guān)于函數(shù)下列結(jié)論正確的是()A.圖像關(guān)于軸對(duì)稱 B.圖像關(guān)于原點(diǎn)對(duì)稱C.在上單調(diào)遞增 D.恒大于011.設(shè)函數(shù)(),已知在有且僅有3個(gè)零點(diǎn),下列結(jié)論正確的是()A.在上存在,,滿意B.在有且僅有1個(gè)最小值點(diǎn)C.在單調(diào)遞增D.的取值范圍是12.已知正方體,過(guò)對(duì)角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是()A.平面分正方體所得兩部分的體積相等;B.四邊形肯定平行四邊形;C.平面與平面不行能垂直;D.四邊形的面積有最大值.三、填空題:本題共4小題,每小題5分,共20分.13.已知雙曲線過(guò)點(diǎn)且漸近線為,則雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_________.14.若綻開(kāi)式的二項(xiàng)式系數(shù)之和是,則__________;綻開(kāi)式中的常數(shù)項(xiàng)的值是__________.15.已知是定義在上的偶函數(shù),且,當(dāng)時(shí),,若在內(nèi)關(guān)于的方程(且)有且只有個(gè)不同的根,則實(shí)數(shù)的取值范圍是______.16.在△ABC中,設(shè)角A,B,C對(duì)應(yīng)的邊分別為,記△ABC的面積為S,且,則的最大值為_(kāi)_________.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.17.在①,,成等差數(shù)列.②,,成等差數(shù)列中任選一個(gè),補(bǔ)充在下列的問(wèn)題中,并解答.在公比為2的等比數(shù)列中,______(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.18.平面四邊形中,已知,,,.(1)求;(2)求周長(zhǎng)的最大值.19.如圖①:在平行四邊形中,,,將沿對(duì)角線折起,使,連結(jié),得到如圖②所示三棱錐.(1)證明:平面;(2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.20.在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或起先呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛藏期.一探討團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:潛藏期(單位:天)人數(shù)(1)求這1000名患者的潛藏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)該傳染病的潛藏期受諸多因素的影響,為探討潛藏期與患者年齡的關(guān)系,以潛藏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并依據(jù)列聯(lián)表推斷是否有的把握認(rèn)為潛藏期與患者年齡有關(guān);潛藏期天潛藏期天總計(jì)50歲以上(含50歲)50歲以下55總計(jì)200(3)以這1000名患者潛藏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛藏期超過(guò)6天發(fā)生的概率,每名患者的潛藏期是否超過(guò)6天相互獨(dú)立.為了深化探討,該探討團(tuán)隊(duì)隨機(jī)調(diào)查了名患者,其中潛藏期超過(guò)6天的人數(shù)最有可能(即概率最大)是多少?附:,其中.21.已知橢圓的左、右焦點(diǎn)分別為,,離心率為,過(guò)作直線與橢圓交于,兩點(diǎn),的周長(zhǎng)為8.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)問(wèn):的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒(méi)有,說(shuō)明理由.22.已知函數(shù).(1)若,曲線在點(diǎn)處的切線與直線平行,求的值;(2)若,且函數(shù)的值域?yàn)?,求的最小值.模擬試題一解析一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.已知集合,,則()A. B. C. D.【答案】B【解析】【分析】求出與中不等式的解集,確定出與,求出與的并集.【詳解】解:集合,1,2,,,所以,故選:.【點(diǎn)睛】此題考查了并集及其運(yùn)算,嫻熟駕馭并集的定義是解本題的關(guān)鍵.2.已知為虛數(shù)單位,復(fù)數(shù)滿意,則的共軛復(fù)數(shù)為()A. B. C. D.【答案】C【解析】【分析】將【詳解】解:因?yàn)?所以,所以其共軛復(fù)數(shù)為故選:C【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,共軛復(fù)數(shù)的概念,是基礎(chǔ)題.3.已知兩個(gè)力,作用于平面內(nèi)某靜止物體的同一點(diǎn)上,為使該物體仍保持靜止,還需給該物體同一點(diǎn)上再加上一個(gè)力,()A. B. C. D.【答案】A【解析】【分析】依據(jù)力的平衡條件下,合力為,即可依據(jù)向量的坐標(biāo)運(yùn)算求得【詳解】解:依據(jù)力的合成可知,因?yàn)槲矬w保持靜止即合力為,則,即故選:A【點(diǎn)睛】本題考查了向量的運(yùn)算在物理中的簡(jiǎn)潔應(yīng)用,靜止?fàn)顟B(tài)的條件應(yīng)用,屬于基礎(chǔ)題.4.若,則()A. B. C. D.【答案】C【解析】【分析】由題意利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,求得,再利用倍角公式求得的值.【詳解】,,得,.故選:C【點(diǎn)睛】本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式,倍角公式的應(yīng)用,屬于基礎(chǔ)題.5.函數(shù)的大致圖象是()A. B.C. D.【答案】B【解析】由于,,且,故此函數(shù)是非奇非偶函數(shù),解除;又當(dāng)時(shí),滿意,即的圖象與直線的交點(diǎn)中有一個(gè)點(diǎn)的橫坐標(biāo)為,解除,故選B.【方法點(diǎn)晴】本題通過(guò)對(duì)多個(gè)圖象的選擇考查函數(shù)的圖象與性質(zhì),屬于中檔題.這類題型也是近年高考常見(jiàn)的命題方向,該題型的特點(diǎn)是綜合性較強(qiáng)較強(qiáng)、考查學(xué)問(wèn)點(diǎn)較多,但是并不是無(wú)路可循.解答這類題型可以從多方面入手,依據(jù)函數(shù)的定義域、值域、單調(diào)性、奇偶性、特殊點(diǎn)以剛好函數(shù)圖象的改變趨勢(shì),利用解除法,將不合題意的選項(xiàng)一一解除6.已知,,且,則的最小值為()A.100 B.81 C.36 D.9【答案】C【解析】【分析】依據(jù),,且,利用基本不等式有,整理可得,驗(yàn)證取等的狀況即可.【詳解】解:已知,,且,所以,即,故.當(dāng)且僅當(dāng)是,即時(shí)等號(hào)成立.所以的最小值為.故選:C【點(diǎn)睛】本題考查利用均值不等式求乘積的最小值,是基礎(chǔ)題.要留意“肯定、二正、三相等”.7.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),直線與拋物線交于,兩點(diǎn),若,則=A. B.C. D.【答案】B【解析】【分析】先依據(jù)題意寫出直線的方程,再將直線的方程與拋物線y2=2x的方程組成方程組,消去y得到關(guān)于x的二次方程,最終利用根與系數(shù)的關(guān)系結(jié)合拋物線的定義即可求線段AB的長(zhǎng).【詳解】解:拋物線C:y2=2x的焦點(diǎn)為F(,0),準(zhǔn)線為l:x=﹣,設(shè)M(x1,y1),N(x2,y2),M,N到準(zhǔn)線的距離分別為dM,dN,由拋物線的定義可知|MF|=dM=x1+,|NF|=dN=x2+,于是|MN|=|MF|+|NF|=x1+x2+1.∵,則,易知:直線MN的斜率為±,∵F(,0),∴直線PF的方程為y=±(x﹣),將y=±(x﹣),代入方程y2=2x,得3(x﹣)2=2x,化簡(jiǎn)得12x2﹣20x+3=0,∴x1+x2,于是|MN|=x1+x2+11故選:B.【點(diǎn)睛】本題考查拋物線的定義和性質(zhì),考查向量學(xué)問(wèn)的運(yùn)用,考查學(xué)生的計(jì)算實(shí)力,屬于中檔題.8.已知,,,記為,,中不同數(shù)字的個(gè)數(shù),如:,,,則全部的的排列所得的的平均值為()A. B.3 C. D.4【答案】A【解析】【分析】由題意得全部的的排列數(shù)為,再分別探討時(shí)的可能狀況則均值可求【詳解】由題意可知,全部的的排列數(shù)為,當(dāng)時(shí),有3種情形,即,,;當(dāng)時(shí),有種;當(dāng)時(shí),有種,那么全部27個(gè)的排列所得的的平均值為.故選A【點(diǎn)睛】本題考查排列組合學(xué)問(wèn)的應(yīng)用,考查分類探討思想,考查推理論證實(shí)力和應(yīng)用意識(shí),是中檔題二、多項(xiàng)選擇題:本題共4小題,每小題5分,共20分.在每小題給出的四個(gè)選項(xiàng)中,有多項(xiàng)符合題目要求.全部選對(duì)的得5分,部分選對(duì)的得3分,有選錯(cuò)的得0分.9.“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡(jiǎn)稱,旨在主動(dòng)發(fā)展我國(guó)與沿線國(guó)家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包涵的命運(yùn)共同體.自2013年以來(lái),“一帶一路”建設(shè)成果顯著下圖是2013-2025年,我國(guó)對(duì)“一帶一路”沿線國(guó)家進(jìn)出口狀況統(tǒng)計(jì)圖,下列描述正確的是().A.這五年,2013年出口額最少B.這五年,出口總額比進(jìn)口總額多C.這五年,出口增速前四年逐年下降D.這五年,2024年進(jìn)口增速最快【答案】ABD【解析】【分析】選項(xiàng)A:視察五個(gè)灰色的條形圖的凹凸即可推斷;選項(xiàng)B:視察五組條形圖,對(duì)比每組灰色條形圖與黑色條形圖的凹凸及凹凸懸殊程度即可推斷;選項(xiàng)C:從圖中知,紅色的折線圖是先上升后下降即可推斷;選項(xiàng)D:視察這五年所對(duì)的藍(lán)色折線圖的凹凸即可推斷.【詳解】解:選項(xiàng)A:視察五個(gè)灰色的條形圖,可得2013年所對(duì)的灰色條形圖高度最低,所以這五年,2013年出口額最少.故A正確;選項(xiàng)B:視察五組條形圖可得2013年出口額比進(jìn)口額稍低但2024年-2025年都是出口額高于進(jìn)口額并且2024年和2024年都是出口額明顯高于進(jìn)口額,故這五年,出口總額比進(jìn)口總額多.故B正確:選項(xiàng)C:從圖中可知,紅色的折線圖是先上升后下降即2013年到2024年出口增速是上升的.故C錯(cuò)誤;選項(xiàng)D:從圖中可知,藍(lán)色的折線圖2024年是最高的,即2024年進(jìn)口增速最快,故D正確.故選:ABD【點(diǎn)睛】本題主要考查統(tǒng)計(jì)條形圖和折線圖的應(yīng)用:解題的關(guān)鍵是從條形圖看出口金額和進(jìn)口金額從折線圖看出口增速和進(jìn)口增速;屬于基礎(chǔ)題.10.關(guān)于函數(shù)下列結(jié)論正確的是()A.圖像關(guān)于軸對(duì)稱 B.圖像關(guān)于原點(diǎn)對(duì)稱C.在上單調(diào)遞增 D.恒大于0【答案】ACD【解析】【分析】利用函數(shù)的奇偶性,單調(diào)性干脆求解.【詳解】解:函數(shù)定義域?yàn)?①因?yàn)?故函數(shù)為偶函數(shù),所以A正確;②由①知,函數(shù)為偶函數(shù),所以B不正確;③當(dāng)時(shí),,且在單調(diào)遞減,當(dāng)時(shí),,且在單調(diào)遞減,而,故在單調(diào)遞調(diào)減,又由為偶函數(shù),故在上單調(diào)遞增,所以C正確;④由①知,,當(dāng),,,,故此時(shí).故D正確.故選:ACD【點(diǎn)睛】本題考查函數(shù)的奇偶性、單調(diào)性和恒大于0,屬于函數(shù)基本性質(zhì)的綜合題,是中檔題。11.設(shè)函數(shù)(),已知在有且僅有3個(gè)零點(diǎn),下列結(jié)論正確的是()A.在上存在,,滿意B.在有且僅有1個(gè)最小值點(diǎn)C.在單調(diào)遞增D.的取值范圍是【答案】AB【解析】【分析】由題意依據(jù)在區(qū)間有3個(gè)零點(diǎn)畫出大致圖象,可得區(qū)間長(zhǎng)度介于周期,,再用表示周期,得的范圍.【詳解】解:畫出函數(shù)大致圖象如圖所示,當(dāng)時(shí);又,所以時(shí)在軸右側(cè)第一個(gè)最大值區(qū)間內(nèi)單調(diào)遞增,函數(shù)在,僅有3個(gè)零點(diǎn)時(shí),則的位置在之間(包括,不包括,令,則得,,軸右側(cè)第一個(gè)點(diǎn)橫坐標(biāo)為,周期,所以,即,解得,所以錯(cuò)誤;在區(qū)間,上,函數(shù)達(dá)到最大值和最小值,所以存在,,滿意,所以正確;由大致圖象得,在內(nèi)有且只有1個(gè)最小值,正確;因?yàn)樽钚≈禐?,所以時(shí),,,所以時(shí),函數(shù)不單調(diào)遞增,所以錯(cuò)誤.故選:.【點(diǎn)睛】本題考查了三角函數(shù)圖象及周期的計(jì)算問(wèn)題,由題意求出的范圍,再推斷命題的真假性,是解題的關(guān)鍵.12.已知正方體,過(guò)對(duì)角線作平面交棱于點(diǎn),交棱于點(diǎn),下列正確的是()A.平面分正方體所得兩部分的體積相等;B.四邊形肯定是平行四邊形;C.平面與平面不行能垂直;D.四邊形的面積有最大值.【答案】ABD【解析】【分析】由正方體的對(duì)稱性可知,平面分正方體所得兩部分的體積相等;依題意可證,,故四邊形肯定是平行四邊形;當(dāng)為棱中點(diǎn)時(shí),平面,平面平面;當(dāng)與重合,當(dāng)與重合時(shí)的面積有最大值.【詳解】解:對(duì)于A:由正方體的對(duì)稱性可知,平面分正方體所得兩部分的體積相等,故A正確;對(duì)于B:因?yàn)槠矫?平面平面,平面平面,.同理可證:,故四邊形肯定是平行四邊形,故B正確;對(duì)于C:當(dāng)為棱中點(diǎn)時(shí),平面,又因?yàn)槠矫?所以平面平面,故C不正確;對(duì)于D:當(dāng)與重合,當(dāng)與重合時(shí)的面積有最大值,故D正確.故選:ABD【點(diǎn)睛】本題考查正方體的截面的性質(zhì),解題關(guān)鍵是由截面表示出相應(yīng)的量與相應(yīng)的關(guān)系,考查空間想象力.三、填空題:本題共4小題,每小題5分,共20分.13.已知雙曲線過(guò)點(diǎn)且漸近線為,則雙曲線的標(biāo)準(zhǔn)方程為_(kāi)_________.【答案】【解析】【分析】依據(jù)雙曲線的漸近線方程可設(shè)雙曲線方程為,將點(diǎn)代入方程求出,即可得出雙曲線方程為.【詳解】解:依據(jù)題意,雙曲線的漸近線方程為,可化為:,則可設(shè)雙曲線方程為,將點(diǎn)代入,得,即,故雙曲線方程為:.故答案為:【點(diǎn)睛】本題考查雙曲線的標(biāo)準(zhǔn)方程、雙曲線的幾何性質(zhì)等基礎(chǔ)學(xué)問(wèn)考查運(yùn)算求解實(shí)力,考查數(shù)形結(jié)合思想屬于基礎(chǔ)題特殊要駕馭已知漸近線方程時(shí),如何設(shè)出雙曲線的標(biāo)準(zhǔn)方程.14.若綻開(kāi)式的二項(xiàng)式系數(shù)之和是,則__________;綻開(kāi)式中的常數(shù)項(xiàng)的值是__________.【答案】(1).(2).135【解析】【分析】由二項(xiàng)式系數(shù)和求出指數(shù),仔寫出綻開(kāi)式通項(xiàng)后可得常數(shù)項(xiàng).【詳解】解:因?yàn)榫`開(kāi)式的二項(xiàng)式系數(shù)之和是,則,解得,所以綻開(kāi)式中常數(shù)項(xiàng)的值是.故答案為:(1).(2).135【點(diǎn)睛】本題主要考查二項(xiàng)式定理,在綻開(kāi)式中二項(xiàng)式系數(shù)為,全部項(xiàng)的系數(shù)和為.其中二項(xiàng)式系數(shù)是固定的,只與指數(shù)有關(guān),而全部相系數(shù)還與二項(xiàng)式中的系數(shù)有關(guān).15.已知是定義在上的偶函數(shù),且,當(dāng)時(shí),,若在內(nèi)關(guān)于的方程(且)有且只有個(gè)不同的根,則實(shí)數(shù)的取值范圍是______.【答案】【解析】【分析】推導(dǎo)出函數(shù)的周期和對(duì)稱軸,由題意可知函數(shù)與函數(shù)在區(qū)間上的圖象有個(gè)交點(diǎn),數(shù)形結(jié)合可得出實(shí)數(shù)所滿意的不等式組,進(jìn)而可解出實(shí)數(shù)的取值范圍.【詳解】由,得,即函數(shù)的圖象關(guān)于直線對(duì)稱.又是定義在上的偶函數(shù),所以,即,則是以4為周期的周期函數(shù).畫出函數(shù)與函數(shù)在上的圖象如圖所示.要使函數(shù)與的圖象有個(gè)不同的交點(diǎn),則有,解得,即實(shí)數(shù)的取值范圍是.故答案為:.【點(diǎn)睛】本題考查利用函數(shù)的零點(diǎn)個(gè)數(shù)求參數(shù)的取值范圍,一般轉(zhuǎn)化為兩個(gè)函數(shù)圖象的交點(diǎn)個(gè)數(shù),考查數(shù)形結(jié)合思想的應(yīng)用,屬于中等題.16.在△ABC中,設(shè)角A,B,C對(duì)應(yīng)的邊分別為,記△ABC的面積為S,且,則的最大值為_(kāi)_________.【答案】【解析】【分析】依據(jù)題中條件利用余弦定理進(jìn)行簡(jiǎn)化,然后化簡(jiǎn)為二次函數(shù),求出二次函數(shù)的最值即可.【詳解】由題知,整理得,因?yàn)?,代入整理得,令,有,所以,所以的最大值?故答案為:【點(diǎn)睛】本題主要考查了利用余弦定理解三角形,結(jié)合考查了二次函數(shù)的最值問(wèn)題,屬于中檔題.四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.17.在①,,成等差數(shù)列.②,,成等差數(shù)列中任選一個(gè),補(bǔ)充在下列的問(wèn)題中,并解答.在公比為2等比數(shù)列中,______(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.【答案】(1)(2)【解析】【分析】(1)若選①,依據(jù)三個(gè)數(shù)成等差數(shù)列,建立等量關(guān)系,求得,進(jìn)而求得通項(xiàng)公式;若選②,依據(jù),,成等差數(shù)列,建立等量關(guān)系,求得,進(jìn)而求得通項(xiàng)公式;(2)將代入,求得,,裂項(xiàng)之后求和得結(jié)果.【詳解】(1)選①:因,,成等差數(shù)列,所以,所以,解得,所以.選②:因?yàn)?,,成等差?shù)列,所以,即,所以,解得,所以.(2)因?yàn)?,所以,所以,所?【點(diǎn)睛】該題考查的是有關(guān)數(shù)列的問(wèn)題,涉及到的學(xué)問(wèn)點(diǎn)有三數(shù)成等差數(shù)列的條件,等比數(shù)列的通項(xiàng)公式,裂項(xiàng)相消法求和,屬于中檔題目.18.在平面四邊形中,已知,,,.(1)求;(2)求周長(zhǎng)的最大值.【答案】(1)(2)15【解析】【分析】(1)設(shè),,則,利用正弦定理求出,在利用余弦定理,或,最終檢驗(yàn)即可得出結(jié)果.(2)設(shè),利用正弦定理有,從而得出和的表示方法,然后,即可得出周長(zhǎng)最大值.【詳解】解:(1)由條件即求的長(zhǎng),在中,設(shè),,則,∵,∴,∴整理得,解得或.當(dāng)時(shí)可得,與沖突,故舍去∴(2)在中,設(shè),則∴,∴∴周長(zhǎng)最大值為15.【點(diǎn)睛】本題考查正弦定理和余弦定理解三角形,考查三角形周長(zhǎng)的最大值,是中檔題.19.如圖①:在平行四邊形中,,,將沿對(duì)角線折起,使,連結(jié),得到如圖②所示三棱錐.(1)證明:平面;(2)若,二面角的平面角的正切值為,求直線與平面所成角的正弦值.【答案】(1)證明見(jiàn)解析(2)【解析】【分析】(1)證明,從而證明平面,進(jìn)而得出,即可證平面.最終證得平面.(2)若,二面角的平面角的正切值為,由(1)知平面,因?yàn)槠矫?所以,又,所以即為二面角平面角,得,從而求出,,建立空間直角坐標(biāo)系,求平面的法向量為,最終依據(jù)公式,即得直線與平面所成角大小.【詳解】(1)證明:在平行四邊形中,,則.在三棱錐中,因?yàn)?.所以平面,所以.又,所以平面.又平面,所以.因?yàn)?,所以平面.(2)解:由(1)知平面,因?yàn)槠矫?所以,又,所以即為二面角的平面角,即.因平面,平面.所以,故,又.所以.在平行四邊形,,,所以與為相像三角形,則,故(),解得,故,解得,所以,.過(guò)點(diǎn)作,以為坐標(biāo)原點(diǎn),,,的方向?yàn)檩S、軸、軸的正方向,建立空間直角坐標(biāo)系,如圖所示.則,,,.所以,,.設(shè)平面的法向量為,則令,得.設(shè)直線與平面所成角為,即直線與平面所成角為.【點(diǎn)睛】本題主要考查空間線面垂直判定性質(zhì)及二面角的解法,屬于中檔題.20.在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對(duì)機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或起先呈現(xiàn)該疾病對(duì)應(yīng)的相關(guān)癥狀時(shí)止的這一階段稱為潛藏期.一探討團(tuán)隊(duì)統(tǒng)計(jì)了某地區(qū)1000名患者的相關(guān)信息,得到如下表格:潛藏期(單位:天)人數(shù)(1)求這1000名患者的潛藏期的樣本平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);(2)該傳染病的潛藏期受諸多因素的影響,為探討潛藏期與患者年齡的關(guān)系,以潛藏期是否超過(guò)6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表.請(qǐng)將列聯(lián)表補(bǔ)充完整,并依據(jù)列聯(lián)表推斷是否有的把握認(rèn)為潛藏期與患者年齡有關(guān);潛藏期天潛藏期天總計(jì)50歲以上(含50歲)50歲以下55總計(jì)200(3)以這1000名患者的潛藏期超過(guò)6天的頻率,代替該地區(qū)1名患者潛藏期超過(guò)6天發(fā)生的概率,每名患者的潛藏期是否超過(guò)6天相互獨(dú)立.為了深化探討,該探討團(tuán)隊(duì)隨機(jī)調(diào)查了名患者,其中潛藏期超過(guò)6天的人數(shù)最有可能(即概率最大)是多少?附:,其中.【答案】(1)5.4天;(2)列聯(lián)表見(jiàn)解析,沒(méi)有的把握認(rèn)為潛藏期與年齡有關(guān);(3)最有可能是8人.【解析】【分析】(1)依據(jù)統(tǒng)計(jì)數(shù)據(jù)計(jì)算平均數(shù)即可;(2)依據(jù)題意補(bǔ)充完整列聯(lián)表,計(jì)算,比照臨界值得出結(jié)論;(3)依據(jù)題意知隨機(jī)變量,計(jì)算概率,列不等式組并結(jié)合題意求出的值.【詳解】解:(1)依據(jù)統(tǒng)計(jì)數(shù)據(jù),計(jì)算平均數(shù)為:天.(2)依據(jù)題意,補(bǔ)充完整的列聯(lián)表如下:潛藏期天潛藏期天總計(jì)50歲以上(含50歲)653510050歲以下5545100總計(jì)12080200則,經(jīng)查表,得,所以沒(méi)有的把握認(rèn)為潛藏期與年齡有關(guān).(3)由題可知,該地區(qū)每1名患者潛藏期超過(guò)6天發(fā)生的概率為,設(shè)調(diào)查的20名患者中潛藏期超過(guò)6天的人數(shù)為,則,,,,,…,,由得,化簡(jiǎn)得,解得,又,所以,即

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論