版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第35練空間向量的運(yùn)算及其坐標(biāo)表示(精練)【A組
在基礎(chǔ)中考查功底】一、單選題1.已知向量SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)空間向量的加減法、數(shù)量積以及模值坐標(biāo)運(yùn)算可判斷.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以根據(jù)空間向量的加減法、數(shù)量積以及模值運(yùn)算可判斷:對(duì)于選項(xiàng)A:SKIPIF1<0,故A錯(cuò)誤;對(duì)于選項(xiàng)B:SKIPIF1<0,故B錯(cuò)誤;對(duì)于選項(xiàng)C:SKIPIF1<0,故C錯(cuò)誤;對(duì)于選項(xiàng)D:SKIPIF1<0,故D正確.故選:D2.已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則x的值為(
)A.4 B.SKIPIF1<0 C.5 D.SKIPIF1<0【答案】A【分析】根據(jù)空間向量垂直得到方程,求出SKIPIF1<0.【詳解】由題意得SKIPIF1<0,解得SKIPIF1<0.故選:A3.已知三棱錐SKIPIF1<0,點(diǎn)M,N分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,用SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0,則SKIPIF1<0等于()
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】運(yùn)用向量的線性運(yùn)算即可求得結(jié)果.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D.4.設(shè)SKIPIF1<0,向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.4【答案】C【分析】根據(jù)空間向量平行與垂直的坐標(biāo)表示,求得SKIPIF1<0的值,結(jié)合向量模的計(jì)算公式,即可求解.【詳解】由向量SKIPIF1<0SKIPIF1<0SKIPIF1<0且SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故選:C.5.平行六面體SKIPIF1<0中,化簡(jiǎn)SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)已知條件,結(jié)合向量的加減法法則,即可求解.【詳解】
SKIPIF1<0為平行四面體,SKIPIF1<0故選:A.6.已知SKIPIF1<0為空間任意一點(diǎn),若SKIPIF1<0,則SKIPIF1<0四點(diǎn)(
)A.一定不共面 B.一定共面 C.不一定共面 D.無(wú)法判斷【答案】B【分析】根據(jù)空間向量線性運(yùn)算化簡(jiǎn)得SKIPIF1<0,即可判斷四點(diǎn)位置情況.【詳解】由題設(shè)SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0四點(diǎn)共面.故選:B7.如圖,在平行六面體SKIPIF1<0中,SKIPIF1<0.點(diǎn)SKIPIF1<0在SKIPIF1<0上,且SKIPIF1<0,則SKIPIF1<0(
)
A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】利用空間向量的基本定理可得出SKIPIF1<0關(guān)于SKIPIF1<0的表達(dá)式.【詳解】在平行六面體SKIPIF1<0中,SKIPIF1<0則SKIPIF1<0,SKIPIF1<0.故選:D.8.在平行六面體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的交點(diǎn),若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列向量中與SKIPIF1<0相等的向量是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)給定條件,利用空間向量基本定理結(jié)合空間向量運(yùn)算求解作答.【詳解】在平行六面體SKIPIF1<0中,SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的交點(diǎn),故SKIPIF1<0,
故SKIPIF1<0.故選:B9.如圖,空間四邊形OABC中,SKIPIF1<0,點(diǎn)M在SKIPIF1<0上,且SKIPIF1<0,點(diǎn)N為BC中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)空間向量的加減和數(shù)乘運(yùn)算直接求解即可.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,又點(diǎn)N為BC中點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0.故選:B.10.四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),設(shè)SKIPIF1<0則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)題意,由空間向量的線性運(yùn)算,代入計(jì)算化簡(jiǎn),即可得到結(jié)果.【詳解】
由題意可得,SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:A11.已知點(diǎn)SKIPIF1<0,SKIPIF1<0,C為線段AB上一點(diǎn),且SKIPIF1<0,則點(diǎn)C的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,再利用空間向量的線性運(yùn)算即可得到方程組,解出即可.【詳解】SKIPIF1<0,SKIPIF1<0.設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,∴點(diǎn)C的坐標(biāo)為SKIPIF1<0.故選:C.12.在四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,D為BC的中點(diǎn),E為AD的中點(diǎn),則SKIPIF1<0=(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】SKIPIF1<0是三個(gè)不共面的向量,構(gòu)成空間的一個(gè)基底SKIPIF1<0,利用向量的線性運(yùn)算用基底表示SKIPIF1<0即可.【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0即:SKIPIF1<0故選:C.13.我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中,將底面為矩形且一側(cè)棱垂直于底面的四棱錐稱(chēng)為陽(yáng)馬.如圖,四棱錐SKIPIF1<0為陽(yáng)馬,SKIPIF1<0平面SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)向量線性運(yùn)算,以SKIPIF1<0為基底表示出SKIPIF1<0,從而確定SKIPIF1<0的取值.【詳解】SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故選:A.二、多選題14.若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為空間不同的四點(diǎn),則下列各式為零向量的是(
)①SKIPIF1<0;②SKIPIF1<0;③SKIPIF1<0;④SKIPIF1<0.A.① B.② C.③ D.④【答案】BD【分析】根據(jù)向量加法,減法運(yùn)算法則,即可求解判斷.【詳解】①中,原式SKIPIF1<0,不符合題意;②中,原式SKIPIF1<0,符合題意;③中,原式SKIPIF1<0,不符合題意;④中,原式SKIPIF1<0,符合題意.故選:BD15.已知A,B,C三點(diǎn)不共線,對(duì)平面ABC外的任一點(diǎn)O,下列條件中不能確定點(diǎn)M,A,B,C共面的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【分析】利用向量四點(diǎn)共面的結(jié)論進(jìn)行判斷即可.【詳解】設(shè)SKIPIF1<0,若點(diǎn)SKIPIF1<0與點(diǎn)SKIPIF1<0共面,則SKIPIF1<0,逐一檢驗(yàn)各選項(xiàng),可知只有選項(xiàng)D確定點(diǎn)M,A,B,C共面.故選:ABC.16.在空間直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
).A.點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0平面對(duì)稱(chēng)的點(diǎn)是SKIPIF1<0B.點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng)的點(diǎn)是SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】ACD【分析】根據(jù)空間向量的坐標(biāo)表示計(jì)算可得.【詳解】點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0平面對(duì)稱(chēng)的點(diǎn)是SKIPIF1<0,故A正確.點(diǎn)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱(chēng)的點(diǎn)是SKIPIF1<0,故B不正確.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故C、D均正確.故選:ACD17.在正方體SKIPIF1<0中,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】由題意畫(huà)出幾何體,再由平面向量的加法運(yùn)算逐一分析四個(gè)選項(xiàng)得答案.【詳解】如圖,
對(duì)于A,SKIPIF1<0,故A正確;對(duì)于B,SKIPIF1<0,易知SKIPIF1<0,則SKIPIF1<0為等邊三角形,SKIPIF1<0,即SKIPIF1<0,故B正確;對(duì)于C,SKIPIF1<0,故C錯(cuò)誤;對(duì)于D,SKIPIF1<0,故D正確.故選:ABD.18.如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0分別是SKIPIF1<0上的點(diǎn),且SKIPIF1<0.設(shè)SKIPIF1<0,若SKIPIF1<0,則下列說(shuō)法中正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BD【分析】根據(jù)空間向量基本定理、空間向量模的公式,結(jié)合空間向量數(shù)量積運(yùn)算性質(zhì)逐一判斷即可.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0故A錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故B正確;因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故C錯(cuò)誤;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故D正確.故選:BD.19.如圖,已知四面體SKIPIF1<0的所有棱長(zhǎng)都等于SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0的中點(diǎn),則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ACD【分析】利用空間數(shù)量積運(yùn)算法則計(jì)算出ABC三個(gè)選項(xiàng)中的結(jié)果;作出輔助線,證明出SKIPIF1<0⊥SKIPIF1<0,得到SKIPIF1<0.【詳解】由題意得:四面體SKIPIF1<0為正四面體,故SKIPIF1<0,故SKIPIF1<0,A正確;因?yàn)镾KIPIF1<0分別是SKIPIF1<0的中點(diǎn),所以SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,B錯(cuò)誤;SKIPIF1<0,C正確;取SKIPIF1<0的中點(diǎn)SKIPIF1<0,連接SKIPIF1<0,因?yàn)镾KIPIF1<0均為等邊三角形,所以SKIPIF1<0⊥SKIPIF1<0,且SKIPIF1<0⊥SKIPIF1<0,因?yàn)镾KIPIF1<0,且SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0⊥平面SKIPIF1<0,因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0⊥SKIPIF1<0,SKIPIF1<0⊥SKIPIF1<0,故SKIPIF1<0,D正確.故選:ACD20.空間直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0B.SKIPIF1<0是等腰直角三角形C.與SKIPIF1<0平行的單位向量的坐標(biāo)為SKIPIF1<0或SKIPIF1<0D.SKIPIF1<0在SKIPIF1<0方向上的投影向量的坐標(biāo)為SKIPIF1<0【答案】AC【分析】本題考查空間向量的坐標(biāo)運(yùn)算,利用向量的加減法得出SKIPIF1<0坐標(biāo),再利用向量的模長(zhǎng)公式SKIPIF1<0,可判斷A選項(xiàng);計(jì)算出三角形三條邊長(zhǎng),可判斷B選項(xiàng);與已知向量平行的單位向量計(jì)算公式:SKIPIF1<0可判斷C選項(xiàng);根據(jù)SKIPIF1<0在SKIPIF1<0方向上的投影向量與SKIPIF1<0向量共線的性質(zhì),可判斷D選項(xiàng).【詳解】根據(jù)空間向量的線性運(yùn)算,SKIPIF1<0SKIPIF1<0,選項(xiàng)A正確;SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0計(jì)算可得,SKIPIF1<0三條邊不相等,選項(xiàng)B不正確;與SKIPIF1<0平行的單位向量為:SKIPIF1<0選項(xiàng)C正確;SKIPIF1<0在SKIPIF1<0方向上的投影向量與SKIPIF1<0向量共線,SKIPIF1<0,選項(xiàng)D不正確,故選:AC.21.在四棱錐SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為SKIPIF1<0的正方形,SKIPIF1<0,則以下結(jié)論正確的有(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】CD【分析】建立空間直角坐標(biāo)系,利用坐標(biāo)法確定正確答案.【詳解】依題意可知,四棱錐SKIPIF1<0是正四棱錐,設(shè)SKIPIF1<0,連接SKIPIF1<0,則SKIPIF1<0平面SKIPIF1<0,由于SKIPIF1<0平面SKIPIF1<0,所以SKIPIF1<0,由于SKIPIF1<0,所以SKIPIF1<0兩兩相互垂直,以SKIPIF1<0為原點(diǎn),建立如圖所示空間直角坐標(biāo)系,四邊形SKIPIF1<0是正方形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,A選項(xiàng)錯(cuò)誤.SKIPIF1<0,B選項(xiàng)錯(cuò)誤.SKIPIF1<0,C選項(xiàng)正確.SKIPIF1<0,所以D選項(xiàng)正確.故選:CD三、填空題22.如圖,三棱柱SKIPIF1<0中,SKIPIF1<0、SKIPIF1<0分別是SKIPIF1<0、SKIPIF1<0的中點(diǎn),設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.
【答案】SKIPIF1<0【分析】由空間向量的線性運(yùn)算即可求解.【詳解】SKIPIF1<0,故答案為:SKIPIF1<023.設(shè)SKIPIF1<0,向量SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】由向量的坐標(biāo)表示和模長(zhǎng)公式計(jì)算.【詳解】由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.24.已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0互相垂直,則SKIPIF1<0的值是.【答案】SKIPIF1<0【分析】向量的垂直用坐標(biāo)表示為SKIPIF1<0,代入即可求出答案.【詳解】SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0與SKIPIF1<0互相垂直,所以SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<025.已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】由空間向量的坐標(biāo)運(yùn)算求解,【詳解】SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0故答案為:SKIPIF1<026.已知空間向量SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為(用坐標(biāo)表示).【答案】SKIPIF1<0【分析】利用投影向量的定義結(jié)合空間向量數(shù)量積的坐標(biāo)運(yùn)算可得SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo).【詳解】已知空間向量SKIPIF1<0和SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.27.在長(zhǎng)方體SKIPIF1<0中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】1【分析】由向量的線性運(yùn)算,結(jié)合空間向量數(shù)量積的運(yùn)算求解即可.【詳解】如圖所示,
在長(zhǎng)方體SKIPIF1<0中,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:1.28.已知向量SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】設(shè)SKIPIF1<0,依題意可得SKIPIF1<0,再根據(jù)向量夾角公式即可求解.【詳解】設(shè)SKIPIF1<0向量SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.29.已知正方體SKIPIF1<0中,若點(diǎn)SKIPIF1<0是側(cè)面SKIPIF1<0的中心,且SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】根據(jù)空間向量基本定理可求出SKIPIF1<0即可得解.【詳解】
因?yàn)镾KIPIF1<0SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.則SKIPIF1<0.故答案為:SKIPIF1<0.30.已知基底SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【分析】根據(jù)向量平行的判定定理運(yùn)算求解.【詳解】因?yàn)镾KIPIF1<0,且SKIPIF1<0,則存在唯一實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.31.如圖,正三棱柱SKIPIF1<0為的底面邊長(zhǎng)為SKIPIF1<0,側(cè)棱長(zhǎng)為SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成的角的正弦值為.【答案】SKIPIF1<0【分析】以SKIPIF1<0為基底,求出SKIPIF1<0的值,利用平面向量的夾角公式求解即可.【詳解】正三棱柱SKIPIF1<0為的底面邊長(zhǎng)為SKIPIF1<0,側(cè)棱長(zhǎng)為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0所成的角的正弦值為SKIPIF1<0,故答案為:SKIPIF1<032.已知向量SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo)為.【答案】SKIPIF1<0SKIPIF1<0【分析】對(duì)SKIPIF1<0兩邊平方后得到SKIPIF1<0,代入投影向量的公式進(jìn)行求解即可得投影向量的坐標(biāo).【詳解】SKIPIF1<0兩邊平方化簡(jiǎn)得:SKIPIF1<0,①因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,代入①得:SKIPIF1<0,解得:SKIPIF1<0,SKIPIF1<0,所以,SKIPIF1<0在SKIPIF1<0上的投影向量坐標(biāo)為SKIPIF1<0.故答案為:2,SKIPIF1<0.33.如圖,平行六面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)為.
【答案】1【分析】根據(jù)空間向量的數(shù)量積運(yùn)算律求解即可.【詳解】由題可得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,且SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故答案為:1.【B組
在綜合中考查能力】一、單選題1.在空間四邊形ABCD中,若向量SKIPIF1<0,SKIPIF1<0,點(diǎn)E,F(xiàn)分別為線段BC,AD的中點(diǎn),則SKIPIF1<0的坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】令SKIPIF1<0,根據(jù)向量的坐標(biāo)表示求出SKIPIF1<0坐標(biāo),進(jìn)而確定E,F(xiàn)坐標(biāo),最后求SKIPIF1<0的坐標(biāo)即可.【詳解】令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:D2.向量SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為()A.SKIPIF1<0或1 B.1 C.3或SKIPIF1<0 D.3或1【答案】A【分析】利用空間向量模長(zhǎng)的坐標(biāo)表示求得SKIPIF1<0,再由向量垂直的坐標(biāo)表示求SKIPIF1<0,即可得結(jié)果.【詳解】由SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,當(dāng)SKIPIF1<0,則SKIPIF1<0;當(dāng)SKIPIF1<0,則SKIPIF1<0;所以SKIPIF1<0的值為SKIPIF1<0或1.故選:A3.在四面體SKIPIF1<0中,SKIPIF1<0,點(diǎn)SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)空間向量的線性運(yùn)算可得答案.【詳解】SKIPIF1<0點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0.
故選:B.4.如圖,在三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0與SKIPIF1<0的交點(diǎn)為M,則SKIPIF1<0(
).
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)空間向量的線性運(yùn)算可得SKIPIF1<0,進(jìn)而結(jié)合空間向量的數(shù)量積公式運(yùn)算即可求解.【詳解】由題意得SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0.故選:C.5.已知直線SKIPIF1<0的一個(gè)方向向量SKIPIF1<0,直線SKIPIF1<0的一個(gè)方向向量SKIPIF1<0,若SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.-3或1 B.3或SKIPIF1<0C.-3 D.1【答案】A【分析】根據(jù)空間向量的模的坐標(biāo)表示結(jié)合SKIPIF1<0即可求得x的值,再根據(jù)SKIPIF1<0,列出方程,即可求得y,從而可得答案.【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故選:A.6.已知向量SKIPIF1<0在向量SKIPIF1<0上的投影向量是SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)向量SKIPIF1<0在向量SKIPIF1<0上的投影向量求出SKIPIF1<0,代入SKIPIF1<0的定義式即可.【詳解】SKIPIF1<0,設(shè)向量SKIPIF1<0在向量SKIPIF1<0的夾角為SKIPIF1<0,所以向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故選:C.7.如圖,在三棱錐SKIPIF1<0中,SKIPIF1<0是邊長(zhǎng)為3的正三角形,SKIPIF1<0是SKIPIF1<0上一點(diǎn),SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn)且SKIPIF1<0,則SKIPIF1<0(
)
A.5 B.3 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】以SKIPIF1<0為一組基底,表示SKIPIF1<0求解.【詳解】解:以SKIPIF1<0為一組基底,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0.故選:D8.在平行六面體SKIPIF1<0中,其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.100 B.SKIPIF1<0 C.56 D.10【答案】D【分析】由題意可得SKIPIF1<0,結(jié)合已知條件及模長(zhǎng)公式即可求解.【詳解】
SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故選:D.9.如圖,SKIPIF1<0,SKIPIF1<0分別是圓臺(tái)上、下底面的兩條直徑,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是弧SKIPIF1<0靠近點(diǎn)SKIPIF1<0的三等分點(diǎn),則SKIPIF1<0在SKIPIF1<0上的投影向量是(
).
A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】作出SKIPIF1<0在SKIPIF1<0上的投影向量,從而求得正確答案.【詳解】如圖,取SKIPIF1<0在下底面的投影C,作SKIPIF1<0,垂足為D.連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0.設(shè)上底面的半徑為r,則SKIPIF1<0,SKIPIF1<0.故SKIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0.故選:C
10.在正四面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為SKIPIF1<0中點(diǎn),SKIPIF1<0為SKIPIF1<0靠近SKIPIF1<0的三等分點(diǎn),用向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0表示SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】利用向量加法和減法和數(shù)乘的運(yùn)算,用SKIPIF1<0表示出SKIPIF1<0.【詳解】因?yàn)镾KIPIF1<0為SKIPIF1<0中點(diǎn),所以SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0靠近SKIPIF1<0的三等分點(diǎn),所以SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0.故選:A.11.正四面體SKIPIF1<0的棱長(zhǎng)為2,點(diǎn)D是SKIPIF1<0的重心,則SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)空間向量的線性運(yùn)算和數(shù)量積的定義計(jì)算即可.【詳解】因?yàn)辄c(diǎn)D是SKIPIF1<0的重心,SKIPIF1<0正四面體SKIPIF1<0的棱長(zhǎng)為2,SKIPIF1<0SKIPIF1<0.故選:D.12.在平行六面體SKIPIF1<0中,底面SKIPIF1<0是邊長(zhǎng)為2的正方形,SKIPIF1<0,SKIPIF1<0,則異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】根據(jù)給定條件,利用空間向量求出異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值作答.【詳解】在平行六面體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,而SKIPIF1<0,且SKIPIF1<0,于是SKIPIF1<0,
因此SKIPIF1<0,所以異面直線SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.故選:C13.已知空間向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角的余弦值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】根據(jù)給定條件,利用空間向量坐標(biāo)運(yùn)算,求出n值,再利用夾角公式計(jì)算作答.【詳解】向量SKIPIF1<0,則SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,因此SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0與SKIPIF1<0的夾角的余弦值SKIPIF1<0.故選:B14.正方體SKIPIF1<0的棱長(zhǎng)為2,P是空間內(nèi)的動(dòng)點(diǎn),且SKIPIF1<0,則SKIPIF1<0的最小值為(
).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】取SKIPIF1<0的中點(diǎn)M,連接SKIPIF1<0,取SKIPIF1<0的中點(diǎn)N,連接SKIPIF1<0,則由已知條件可得動(dòng)點(diǎn)P的軌跡為正方體SKIPIF1<0的外接球,然后由向量的運(yùn)算可得SKIPIF1<0,從而可求得結(jié)果.【詳解】取SKIPIF1<0的中點(diǎn)M,連接SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,故動(dòng)點(diǎn)P的軌跡為以M為球心,SKIPIF1<0為半徑的球.由正方體SKIPIF1<0的棱長(zhǎng)為2,可知正方體SKIPIF1<0外接球的半徑為3,即動(dòng)點(diǎn)P的軌跡為正方體SKIPIF1<0的外接球.取SKIPIF1<0的中點(diǎn)N,連接SKIPIF1<0,則SKIPIF1<0SKIPIF1<0.由題可知,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.所以SKIPIF1<0的最小值為SKIPIF1<0,故選:C15.如圖,在棱長(zhǎng)為1的正方體SKIPIF1<0中,點(diǎn)SKIPIF1<0在SKIPIF1<0上,點(diǎn)SKIPIF1<0在SKIPIF1<0上,則SKIPIF1<0的最小值為(
)
A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】以SKIPIF1<0為坐標(biāo)原點(diǎn)建立合適的空間直角坐標(biāo)系,設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)異面直線距離定義利用空間兩點(diǎn)距離公式即可得到答案.【詳解】以SKIPIF1<0為坐標(biāo)原點(diǎn)建立如圖所示空間直角坐標(biāo)系,則可設(shè)SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,其中SKIPIF1<0,根據(jù)圖中可知直線SKIPIF1<0和直線SKIPIF1<0為異面直線,若能取到兩異面直線間的距離,則此時(shí)SKIPIF1<0距離最小,根據(jù)異面直線公垂線的定義知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,滿足SKIPIF1<0范圍,則此時(shí)SKIPIF1<0,則SKIPIF1<0.故選:C.
二、多選題16.已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則下列結(jié)論正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.記SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0 D.若SKIPIF1<0,則SKIPIF1<0【答案】ABD【分析】根據(jù)空間向量線性坐標(biāo)運(yùn)算、數(shù)量積的坐標(biāo)運(yùn)算以及垂直的坐標(biāo)表示即可求解.【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,選項(xiàng)A:SKIPIF1<0,正確;選項(xiàng)B:SKIPIF1<0,正確;選項(xiàng)C:SKIPIF1<0,錯(cuò)誤;選項(xiàng)D:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,正確;故選:ABD17.空間直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則(
)A.SKIPIF1<0B.SKIPIF1<0與SKIPIF1<0夾角余弦值為SKIPIF1<0C.與SKIPIF1<0平行的單位向量的坐標(biāo)為SKIPIF1<0或SKIPIF1<0D.SKIPIF1<0在SKIPIF1<0方向上的投影向量的坐標(biāo)為SKIPIF1<0【答案】ABC【分析】A選項(xiàng)先算出SKIPIF1<0,然后根據(jù)向量的
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 國(guó)際醫(yī)療技術(shù)轉(zhuǎn)化中的稅收籌劃
- 國(guó)內(nèi)外醫(yī)療資源績(jī)效經(jīng)驗(yàn)借鑒
- 湖北省武漢第二中學(xué)2026屆高二上生物期末調(diào)研試題含解析
- 困難氣道管理的風(fēng)險(xiǎn)防控與案例分析
- 器官移植術(shù)后排斥反應(yīng)的責(zé)任歸屬
- 器官移植術(shù)后排斥反應(yīng)的心理干預(yù)與報(bào)告
- 器官移植排斥反應(yīng)的熱缺血時(shí)間管理
- 品牌價(jià)值評(píng)估:醫(yī)院績(jī)效管理的量化標(biāo)尺
- 上海市部分重點(diǎn)中學(xué)2026屆數(shù)學(xué)高三第一學(xué)期期末調(diào)研試題含解析
- 呼吸治療設(shè)備臨床應(yīng)用適配
- 大型鋼鐵企業(yè)關(guān)鍵備件聯(lián)儲(chǔ)聯(lián)備供應(yīng)鏈戰(zhàn)略共享探討
- 國(guó)企正式工合同范本
- 淺析煤礦巷道快速掘進(jìn)技術(shù)
- 反腐敗反賄賂培訓(xùn)
- 成人留置導(dǎo)尿標(biāo)準(zhǔn)化護(hù)理與并發(fā)癥防控指南
- DB34∕T 4700-2024 智慧中藥房建設(shè)與驗(yàn)收規(guī)范
- 穿越機(jī)基礎(chǔ)課件
- 谷歌員工關(guān)系管理案例
- 班級(jí)互動(dòng)小游戲-課件共30張課件-小學(xué)生主題班會(huì)版
- 物流企業(yè)倉(cāng)儲(chǔ)安全操作規(guī)程與培訓(xùn)教材
- 黃體酮破裂課件
評(píng)論
0/150
提交評(píng)論