2022-2023學年山東省臨沂市蘭陵縣高三數(shù)學第一學期期末考試試題含解析_第1頁
2022-2023學年山東省臨沂市蘭陵縣高三數(shù)學第一學期期末考試試題含解析_第2頁
2022-2023學年山東省臨沂市蘭陵縣高三數(shù)學第一學期期末考試試題含解析_第3頁
2022-2023學年山東省臨沂市蘭陵縣高三數(shù)學第一學期期末考試試題含解析_第4頁
2022-2023學年山東省臨沂市蘭陵縣高三數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數(shù)列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.252.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當直線AD與平面BCD所成角為時,直線AC與平面ABD所成角的正弦值為()A. B. C. D.3.設(shè)正項等比數(shù)列的前n項和為,若,,則公比()A. B.4 C. D.24.設(shè)雙曲線(a>0,b>0)的右焦點為F,右頂點為A,過F作AF的垂線與雙曲線交于B,C兩點,過B,C分別作AC,AB的垂線交于點D.若D到直線BC的距離小于,則該雙曲線的漸近線斜率的取值范圍是()A.B.C.D.5.若復數(shù)滿足,其中為虛數(shù)單位,是的共軛復數(shù),則復數(shù)()A. B. C.4 D.56.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.7.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.8.在平面直角坐標系中,經(jīng)過點,漸近線方程為的雙曲線的標準方程為()A. B. C. D.9.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.10.若復數(shù)滿足,則()A. B. C. D.11.已知a,b是兩條不同的直線,α,β是兩個不同的平面,且,,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件12.函數(shù)f(x)=的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點到準線的距離為.14.在三棱錐中,三條側(cè)棱兩兩垂直,,則三棱錐外接球的表面積的最小值為________.15.某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗原料1千克、原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗原料2千克,原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是__________元.16.已知數(shù)列的前項和公式為,則數(shù)列的通項公式為___.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)交通部門調(diào)查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統(tǒng)計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯(lián)表,并據(jù)此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關(guān);平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員女性駕駛員合計(2)根據(jù)這些樣本數(shù)據(jù)來估計總體,隨機調(diào)查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數(shù)為,假定抽取的結(jié)果相互獨立,求的分布列和數(shù)學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82818.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設(shè)是直線上的動點,當點到平面距離最大時,求面與面所成二面角的正弦值.19.(12分)如圖在直角中,為直角,,,分別為,的中點,將沿折起,使點到達點的位置,連接,,為的中點.(Ⅰ)證明:面;(Ⅱ)若,求二面角的余弦值.20.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.21.(12分)已知橢圓,直線不過原點且不平行于坐標軸,與有兩個交點,,線段的中點為.(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;(Ⅱ)若過點,延長線段與交于點,四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.22.(10分)正項數(shù)列的前n項和Sn滿足:(1)求數(shù)列的通項公式;(2)令,數(shù)列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數(shù)列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.2、A【解析】

設(shè)E為BD中點,連接AE、CE,過A作于點O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應的量,分析得到即為直線AC與平面ABD所成角,進而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點,連接AE、CE,由題可知,,所以平面,過A作于點O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點O與點C重合,此時有平面,過C作與點F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點睛】該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識點有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.3、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數(shù)列得,∴,故選:D.【點睛】本題主要考查等比數(shù)列的性質(zhì)的應用,屬于基礎(chǔ)題.4、A【解析】

由題意,根據(jù)雙曲線的對稱性知在軸上,設(shè),則由得:,因為到直線的距離小于,所以,即,所以雙曲線漸近線斜率,故選A.5、D【解析】

根據(jù)復數(shù)的四則運算法則先求出復數(shù)z,再計算它的模長.【詳解】解:復數(shù)z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數(shù)的計算問題,要求熟練掌握復數(shù)的四則運算以及復數(shù)長度的計算公式,是基礎(chǔ)題.6、D【解析】

設(shè)出坐標,聯(lián)立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數(shù)求最值.【詳解】設(shè),,聯(lián)立,得則,則由,得設(shè),則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關(guān)系的應用,考查利用導數(shù)求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構(gòu)造函數(shù)關(guān)系的方式,然后結(jié)合導數(shù)或者利用函數(shù)值域的方法來求解最值.7、B【解析】

構(gòu)造函數(shù)(),求導可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導數(shù)在判斷函數(shù)單調(diào)性中的應用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.8、B【解析】

根據(jù)所求雙曲線的漸近線方程為,可設(shè)所求雙曲線的標準方程為k.再把點代入,求得k的值,可得要求的雙曲線的方程.【詳解】∵雙曲線的漸近線方程為設(shè)所求雙曲線的標準方程為k.又在雙曲線上,則k=16-2=14,即雙曲線的方程為∴雙曲線的標準方程為故選:B【點睛】本題主要考查用待定系數(shù)法求雙曲線的方程,雙曲線的定義和標準方程,以及雙曲線的簡單性質(zhì)的應用,屬于基礎(chǔ)題.9、C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數(shù)原理可得出結(jié)果.【詳解】兩組至少都是人,則分組中兩組的人數(shù)分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數(shù)為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.10、B【解析】

由題意得,,求解即可.【詳解】因為,所以.故選:B.【點睛】本題考查復數(shù)的四則運算,考查運算求解能力,屬于基礎(chǔ)題.11、C【解析】

根據(jù)線面平行的性質(zhì)定理和判定定理判斷與的關(guān)系即可得到答案.【詳解】若,根據(jù)線面平行的性質(zhì)定理,可得;若,根據(jù)線面平行的判定定理,可得.故選:C.【點睛】本題主要考查了線面平行的性質(zhì)定理和判定定理,屬于基礎(chǔ)題.12、D【解析】

根據(jù)函數(shù)為非偶函數(shù)可排除兩個選項,再根據(jù)特殊值可區(qū)分剩余兩個選項.【詳解】因為f(-x)=≠f(x)知f(x)的圖象不關(guān)于y軸對稱,排除選項B,C.又f(2)==-<0.排除A,故選D.【點睛】本題主要考查了函數(shù)圖象的對稱性及特值法區(qū)分函數(shù)圖象,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質(zhì).14、【解析】

設(shè),可表示出,由三棱錐性質(zhì)得這三條棱長的平方和等于外接球直徑的平方,從而半徑的最小值,得外接球表面積.【詳解】設(shè)則,由兩兩垂直知三棱錐的三條棱的棱長的平方和等于其外接球的直徑的平方.記外接球半徑為,∴當時,.故答案為:.【點睛】本題考查三棱錐外接球表面積,解題關(guān)鍵是掌握三棱錐的性質(zhì):三條側(cè)棱兩兩垂直的三棱錐的外接球的直徑的平方等于這三條側(cè)棱的平方和.15、1元【解析】設(shè)分別生產(chǎn)甲乙兩種產(chǎn)品為桶,桶,利潤為元

則根據(jù)題意可得目標函數(shù),作出可行域,如圖所示作直線然后把直線向可行域平移,

由圖象知當直線經(jīng)過時,目標函數(shù)的截距最大,此時最大,

由可得,即此時最大,

即該公司每天生產(chǎn)的甲4桶,乙4桶,可獲得最大利潤,最大利潤為1.【點睛】本題考查用線性規(guī)劃知識求利潤的最大值,根據(jù)條件建立不等式關(guān)系,以及利用線性規(guī)劃的知識進行求解是解決本題的關(guān)鍵.16、【解析】

由題意,根據(jù)數(shù)列的通項與前n項和之間的關(guān)系,即可求得數(shù)列的通項公式.【詳解】由題意,可知當時,;當時,.又因為不滿足,所以.【點睛】本題主要考查了利用數(shù)列的通項與前n項和之間的關(guān)系求解數(shù)列的通項公式,其中解答中熟記數(shù)列的通項與前n項和之間的關(guān)系,合理準確推導是解答的關(guān)鍵,著重考查了推理與運算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)填表見解析;有的把握認為,平均車速超過與性別有關(guān)(2)詳見解析【解析】

(1)根據(jù)題目所給數(shù)據(jù)填寫列聯(lián)表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關(guān).(2)利用二項分布的知識計算出分布列和數(shù)學期望.【詳解】(1)平均車速超過的人數(shù)平均車速不超過的人數(shù)合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關(guān).(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯(lián)表獨立性檢驗,考查二項分布分布列和數(shù)學期望,屬于中檔題.18、(1)證明見解析(2)【解析】

(1)取中點,連接,根據(jù)菱形的性質(zhì),結(jié)合線面垂直的判定定理和性質(zhì)進行證明即可;(2)根據(jù)面面垂直的判定定理和性質(zhì)定理,可以確定點到直線的距離即為點到平面的距離,結(jié)合垂線段的性質(zhì)可以確定點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.利用空間向量夾角公式,結(jié)合同角的三角函數(shù)關(guān)系式進行求解即可.【詳解】(1)證明:取中點,連接,因為四邊形為菱形且.所以,因為,所以,又,所以平面,因為平面,所以.同理可證,因為,所以平面.(2)解:由(1)得平面,所以平面平面,平面平面.所以點到直線的距離即為點到平面的距離.過作的垂線段,在所有的垂線段中長度最大的為,此時必過的中點,因為為中點,所以此時,點到平面的距離最大,最大值為1.以為坐標原點,直線分別為軸建立空間直角坐標系.則所以平面的一個法向量為,設(shè)平面的法向量為,則即取,則,,所以,所以面與面所成二面角的正弦值為.【點睛】本題考查了線面垂直的判定定理和性質(zhì)的應用,考查了二面角的向量求法,考查了推理論證能力和數(shù)學運算能力.19、(Ⅰ)詳見解析;(Ⅱ).【解析】

(Ⅰ)取中點,連結(jié)、,四邊形是平行四邊形,由,,得,從而,,求出,由此能證明.(Ⅱ)以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,利用向量法能求出二面角的余弦值.【詳解】證明:(Ⅰ)取中點,連結(jié)、,∵,,∴四邊形是平行四邊形,∵,,,∴,∴,∴,在中,,又∵為的中點,∴,又∵,∴.解:(Ⅱ)∵,,,∴,以為原點,、、所在直線分別為,,軸,建立空間直角坐標系,設(shè),則,,,,∴,,,設(shè)面的法向量,則,取,得,同理,得平面的法向量,設(shè)二面角的平面角為,則,∴二面角的余弦值為.【點睛】本題考查面面垂直及線面垂直性質(zhì)定理、線面垂直判定與性質(zhì)定理以及利用空間向量求線面角與二面角,考查基本分析求解能力,屬中檔題.20、(1)(2)直線l的斜率為或【解析】

(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標表示,及韋達定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,則由方程組消去y得,,所以,,由,得,所以,又所以,即所以,因此,直線l的斜率為或.【點睛】本題考查橢圓的標準方程,考查直線和橢圓的位置關(guān)系,考查學生的計算求解能力,難度一般.21、(Ⅰ)詳見解析;(Ⅱ)能,或.【解析】試題分析:(1)設(shè)直線,直線方程與橢圓方程聯(lián)立,根據(jù)韋達定理求根與系數(shù)的關(guān)系,并表示直線的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論