版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
EUROPEANCENTRALBANK
EUROSYSTEM
DiegoRodriguezPalenzuela,VeaceslavGrigora?,LorenaSaiz, GrigorStoevsky,MátéTóth,ThomasWarmedinger
OccasionalPaperSeries
Theeuroareabusinesscycleanditsdrivers
NO354
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBOccasionalPaperSeriesNo3541
Contents
Abstract2
Executivesummary3
1Businesscycledating4
1.1Theclassicalbusinesscycle5
Box1Datingtheeuroareabusinesscycleonamonthlybasis6
Box2IdentificationofturningpointsaccordingtotheMBBQalgorithm9
Box3GlobalbusinesscycledatingbasedontheMBBQalgorithm13
1.2Thedeviationcycleapproach19
2Businesscyclesynchronisation22
2.1Motivationandstylisedfacts22
2.2Synchronisationintheeuroarea24
Box4Businesscyclesthroughthelensofanoptimumcurrencyarea
indexfortheeuroarea28
2.3Synchronisationacrosstheeuroareacountries33
2.4Agranularviewofbusinesscyclesynchronisation38
3Businesscycledrivers45
3.1Growthaccountinginthedeviationcycleapproach45
3.2Financialdriversoftheeuroareabusinesscycle47
3.3Internationalmedium-termbusinesscycles49
3.4Cyclicaldriversofconsumption:theroleofdurablegoods50
3.5Short-termimpactofCOVID-19containment51
4Conclusions54
5Annexes57
5.1Annex1.Businesscyclestatistics57
5.2Annex2.Businesscyclesynchronisation60
References63
ECBOccasionalPaperSeriesNo3542
Abstract
Themonitoringandanalysisofthebusinesscycleisacentralelementofinputsto
monetarypolicydecision-making.Thisreportcontributestotheanalysisofbusinesscyclesintheeuroareainthreedimensions.First,intermsofbusinesscycledating,itproposesautomatedprocedurestocharacterisethebusinesscyclesituationofthe
euroareaanditsmaincomponents,acrosscountriesandsectors.Second,it
investigateshowbusinesscyclesynchronisationhasevolvedoverthelast20years.Third,itanalysesbusinesscycledriversfromseveralperspectives,includingthe
financialandinternationaldimension,interconnectedness,demandandsupply.ItalsofeaturesanearlyanalysisoftheeconomicimplicationsoftheCOVID-19
pandemic.Ratherthanreachingstrongconclusionsonthehistoryoftheeuroareabusinesscycle,theprimaryaimofthereportistopromotesoundmethodsand
approachesthatarepartofongoingenhancementsoftheanalyticalinfrastructure
designedtoanalysehard-to-ascertainquestionsonthenatureandcharacteristicsofeuroareabusinesscycledynamics.
JELcodes:C10,E32,E37
Keywords:businesscycledating,characteristics,synchronisation,drivers
ECBOccasionalPaperSeriesNo3543
Executivesummary
Themonitoringandanalysisofthebusinesscycle–fluctuationsinaggregate
economicactivitybetweenalternatingexpansionsandcontractions–isacentral
elementinmonetarypolicyanalysis.Asoundreal-timeassessmentofthebusinesscycleiskeyingaugingthegrowthoutlookandthusalsomedium-termprice
developments.Linkingobservedeconomicactivitytothebusinesscycleassessmentiskeytotheoverallnarrativeandcommunicationofmonetarypolicydecisions.A
centralbankthereforeneedstousestate-of-the-artbusinesscycledatingand
analysismethods.Thisisevenmoreimportantinalargeandcomplexmonetary
union,wherearea-widedevelopmentsinteractinacomplexmannerwithheterogenousgrowthdynamicsatsub-arealevel.
Thisreportcontributestotheanalysisofbusinesscyclesintheeuroareainthree
maindimensions.First,intermsofbusinesscyclemeasurementanddating,it
proposeseasilyreplicablestate-ofthe-artprocedurestocharacterisethebusinesscyclesituationoftheeuroareaanditsmainunderlyingcomponents,acrossboth
countriesandsectors.Second,itprovidesacomprehensiveanalysisofbusiness
cyclesynchronicity,evaluatingitsevolutionintheeuroareabothinternally(acrosstheeuroareacountriesandsectors)andexternally(relativetootheradvanced
economies).Ahighdegreeofcongruenceorsimilarityoftheeuroareabusiness
cyclewiththatofitsMemberStates,togetherwithahighdegreeofsynchronisationamongtheparticipatingcountries,makesthesinglemonetarypolicymorecoherentandeffective,andenhancestheappropriatenessofitsstanceacrossallMember
States.Third,thereportexploressomecausalityaspectsintermsofthemain
businesscycledriversintheeuroarea.Thisanalysisismoreconceptualinnatureandaddressesseveralresearchquestions,notablytheroleoffinancialfactorsandstructuralshocktransmissionwithintheeuroarea.
Somecaveatsshouldbementioned.Businesscycledriversarenottheonlycauseofmacroeconomicfluctuations.Shocks,policyimpacts(suchaschangesintaxation)
andexternalfactorsgeneratemacroeconomicvolatility:thesemayinteractwith,butarenotagenuinepartof,thebusinesscycle.Similarly,structuralchangesarean
importantsourceofmacroeconomicfluctuationsthatalsoaffectbusinesscycle
dynamics.Thelattermaybeassociatedwithpersistentfactors,ofteninthefieldofinformation-relatedmarketimperfections,orthelong-termimpactofstructural
shocks,forexampletototalfactorproductivity.However,disentanglinggenuine
businesscyclesignalsfromshort-termvolatilityorthemorepermanentimpactof
structuralchangeisadauntingtask.Thisisevenmorechallengingfortheeuroarea,whichhasadatahistoryofjust25years.
Againstthisbackground,ratherthanreachingstrongconclusionsonthebusinesscycleoftheeuroarea,theaimofthereportistopromotesoundmethodsand
analyticalapproachesthatarepartofongoingeffortstoenhancetheanalytical
infrastructureandimproveourunderstandingofimportant,buthard-to-ascertain,questionsonthenatureandcharacteristicsofeuroareabusinesscycledynamics.
ECBOccasionalPaperSeriesNo3544
1Businesscycledating
Themonitoringandanalysisofthebusinesscycle–fluctuationsofaggregateeconomicactivitybetweenalternatingexpansionandcontractionperiods–isofparamountimportanceforpolicymakingandthegeneralpublic.The
businesscycleisakeyconceptintheorganisationofmacroeconomicinformation,
frombothahistoricandaconjuncturalperspective.Foracentralbank,the
understanding(particularlyinrealtime)ofthenatureof,andfactorsunderlying,ongoingeconomicgrowthformsthebasisofasoundunderstandingofprice
pressures(orlackthereof)andthusofinflationdynamics,andultimatelythe
appropriatemonetarypolicystance.Acentralbankthereforeneedstousestate-of-the-artbusinesscycledatingandanalysis.Thisisevenmoreimportantinalarge
andcomplexmonetaryunion,whereanarea-widebusinesscycleinteractsinacomplexmannerwithheterogenousbutpersistentgrowthdynamicsatsub-arealevel.
Againstthisbackdrop,establishingachronologyofthebusinesscycleshouldnotbeamechanicalendeavour.Inpractice,itisdonebydedicatedcommitteesofexperteconomists.Fortheeuroarea,achronologyisprovidedbytheCentreof
EconomicPolicyResearch(CEPR)BusinessCycleDatingCommittee,whereasfor
theUnitedStates,itisthetaskoftheNationalBureauofEconomicResearch
(NBER)BusinessCycleDatingCommittee.Forsomecountries,datingassessmentsareprovidedbyindependentinstitutions,suchastheEconomicCycleResearch
Institute(ECRI)assessmentforthefourlargesteuroareaeconomies.However,
thereisnochronology,unifiedandcomparableacrosscountries,availableforallEUMemberStates.Foralargemonetaryunion,suchastheeuroarea,theabsenceofacommonagreedstandardthatcanbeappliedinrealtimetodatebusinesscyclesisproblematicfromapolicyperspective.Itimpedesthemonitoringofthebusiness
cyclesituationofthemonetaryunioncomponents(atcountry,regionalandsectoral
levels)relativetothatoftheareaasawhole.Withoutanagreedcommonstandard,therefore,itbecomesdifficulttoassessthesynchronicityandcoherenceofbusinesscyclefluctuationsamongthecountriesandsectorsthatmakeupthemonetaryunion.
Toaddresstheseneeds,thischapterproposesprocedurestodatethe
businesscyclefluctuationsofanygivenentity(beitamonetaryunionasa
wholeoritsconstituentcomponents),basedontransparentanduser-friendlytoolsalignedwithcutting-edgemethodsinthisarea.Specifically,thischapter
provideshighlyautomated,replicableandupdatabletoolsthatdeliver
methodologicallycomparablefindingsacrosscountries.Theseresultscomplementthechronologiesprovidedbyofficialbusinesscycledatingcommitteesandother
institutions,withtheadvantageofbeingharmonisedacrosscountries,easily
updatableandthusreadilyavailable.Thedevelopedtoolsprovideabusinesscyclechronologyutilisingbothclassicalandgrowthcycledatingapproachesfortheeuroareaanditsmembercountries,basedonharmonisedtimeseriesandparameters.
ECBOccasionalPaperSeriesNo3545
1.1Theclassicalbusinesscycle
Inthissectionwefollowtheclassicalapproachtoidentifyingbusinesscycleturningpoints,asproposedbyBurnsandMitchell(1946).Thisisalsothe
approachusuallyimplementedbytheBusinessCycleDatingCommitteesofthe
NBERandtheCEPRwhendatingpeaksandtroughsintheUnitedStatesandtheeuroarea,respectively.Inthisapproach,twophasesofthebusinesscycleare
identified:i)arecession(orcontraction)phaseisaperiodbetweenapeakanda
trough,characterisedbyadeclineineconomicactivity(e.g.realgrossdomestic
product(GDP)),typicallyforatleasttwoconsecutivequarters;andii)anexpansionistheperiodbetweenatroughandapeak,i.e.thenon-recessionphaseofthe
economy,whichisitsnormal(prevailingmostofthetime)state
(Chart1)
.
Chart1
Classicalbusinesscyclephases
(level)
Source:Authors’illustration.
Thereareseveraladvantagestotheclassicaldatingapproach.First,thedatingresultsarestableanddonotchangeretrospectivelywiththeaccrualofnew
observations,unlessthehistoricaldataarerevised.Second,classicalbusinesscycledatingdoesnotrequiretheinitialeconometricestimationandextractionofan
unobservedcomponentfromthetimeseries,whichisarequirementforthemain
alternative,thegrowthcycleapproach.Forthelatter,thefilteringoftheunderlying
long-termtrendisusuallyachallengingexercise,especiallywithshortdatasamples–suchasintheeuroarea–anditisthereforesubjecttoreal-timereliabilityissues.Third,apartfrombroadlyacceptableassumptionsdefiningthegeneral
characteristicsofthebusinesscycle(suchastheminimumlengthofaphaseor
lengthofacompletecycle),theclassicalapproachismodel-independent,hence
moretransparentandlesscontroversial.Fourth,thisapproachgeneratesasimple
narrativeoffluctuationsineconomicactivity,whichisgenerallywellunderstoodby
businesssectorobserversandthegeneralpublic.Thesefourreasonsarewhythisisthemainapproachimplementedbytheofficialdatingcommittees.
ECBOccasionalPaperSeriesNo3546
Theterm“classicalexpansion”referstoexpansioninclassicalbusinesscycledating.Thisdefinitiondiffersfromthecorrespondingdefinitioninthegrowthcycleapproach.WeuseunivariateandmultivariateBry-Boschan(BB)1algorithmsbasedonquarterlylogsofrealGDPoritscomponentstodeterminecyclicalpeaks
andtroughs.FollowingBryandBoschan(1971)andHardingandPagan(2002),we
alsosubscribetotheirconclusionthatturningpointdeterminationcannotbe
regardedasobjective,i.e.itcannotbeunequivocallyagreedupon,butthatthereshouldbeagreementontheproceduresusedtoestablishturningpoints.
SimilartotheCEPRdatingcommittee,themainunivariateprocedurereliesonrealquarterlyGDPdatafortheeuroareaortheindividualEUMemberStates.
Thequarterlyfrequencyprovidesasoundbalancebetweenthereliabilityofthe
economicsignalsandthetimelinessoftheinformation(formonthlydating,see
Box
1)
.RealGDPiswidelyacceptedasthemainsingleindicatorofmacroeconomic
activity.
However,asGDPdataareoftenrevisedaftertheirrelease–andthusmayprovideinconclusivesignalsinrealtime–themultivariateanalysis
incorporatesadditionalmacroeconomicvariables.SomeoftheseareavailableearlierormorefrequentlythantheGDPdata,andmanyofthemshowhigher
cyclicalitythanGDP,helpingtoconfirmthephaseofthecycle.
Theclassicaldatingtoolspresentedinthischapterincorporateoptionsfor
datacleaningandimplementingexpertjudgement.Theseadjustmentsare
intendedtobeusedinexceptionalcircumstancesandareprovidedtoensure
consistentresults,alsoforepisodesforwhichthealgorithmisdeemedtohavemis-specifiedthephase.Themethodspresentedheretodateclassicalbusinesscyclesmakeuseofrawseriesthatdonotrequireinitialde-trending,filteringorsmoothing(apartfromusingseasonallyandworkingdayadjusteddata).Thus,theyprovide
timely,reliableresults,whichremainstableintermsoflimitedexpostre-datingof
businesscycles,i.e.datedbusinesscyclesarenotre-assessedorrevisedaslongasdatarevisionsdonottakeplace.
Box1
Datingtheeuroareabusinesscycleonamonthlybasis
PreparedbyJohannesGareis
Thisboxpresentsdatingforbusinesscycleturningpointsintheeuroareaintermsofmonths,asanadditiontothemainapproachinthispaper,whichisquarterly.Tothisend,atwo-stepapproachisused,asinM?nchandUhlig(2005).First,amonthlytimeseriesforeuroarearealGDPis
estimated,usinginterpolationtechniquesthatexploitinformationcontainedinmonthlyeconomic
indicators.Second,anupdatedversionoftheaugmentedBryandBoschan(1971)algorithm
proposedbyM?nchandUhlig(2005)isapplied.Importantly,thisalgorithmallowsforasymmetries
inthebusinesscycleandtranslatesthequarterlysequenceofbusinesscycleturningpointsidentifiedbytheCEPRdatingcommitteeintoamonthlychronology.
1WeusetheModifiedBry-BoschanQuarterly(MBBQ)algorithm,whichistheadaptionbyJamesEngelforcyclelengthrestrictionsbasedonthequarterlyadaptionoftheoriginalBryandBoschanalgorithm.
ECBOccasionalPaperSeriesNo3547
ChartAshowsthepeaksandtroughsintheestimatedmonthlyrealGDPseriesobtainedby
applyingtheaugmentedBBalgorithmaswellastherecessionsdatedbytheCEPR.2AstheCEPR
usuallydatesbusinesscycleturningpointsintermsofquartersratherthanmonths,wehave
assignedtheCEPRdatestothemiddlemonthofeachquarter.Theonlyexceptiontothisisthepre-pandemicbusinesscyclepeak,whichlagstheidentifiedquarterlypeak,accordingtotheCEPR.Ascanbeseen,theresultsoftheaugmentedBBalgorithmareverysimilartothoseoftheCEPR.In
linewiththeCEPR’schronology,thealgorithmidentifiessixcontractionsinthepost-1970period:
fromAugust1974toMarch1975,fromFebruary1980toSeptember1982,fromMarch1992toMay1993,fromMarch2008toMarch2009,fromMay2011toFebruary2013andfromNovember2019toApril2020.Inmostcases,themonthlypeaksandtroughsfallwithinthepeakortroughquarters
datedbytheCEPR.Forthosecasesthatdonotmatch,themaximumdeviationbetweentheturningpointsdeterminedbytheaugmentedBBalgorithmandthoseidentifiedbytheCEPRisfourmonths,withnoclearlead-lagpattern.
ChartA
TurningpointsineuroareamonthlyrealGDP
Source:Eurostat,AWMdatabase,CEPRandowncalculations.
Notes:CEPRrecessionsareindicatedbytheshadedareas.SincetheCEPRusuallydatesbusinesscycleturningpointsintermsofquartersratherthan
months,theCEPRdatesareassignedtothemiddlemonthofeachquarter.Theonlyexceptiontothisisthemostrecentbusinesscyclepeak,whichlagstheidentifiedquarterlypeak.
Regardingthepandemicrecession,thealgorithmsuggeststhattheeuroareareachedabusinesscyclepeakinOctober2019,whiletheCEPRdeterminedthattheeuroareaeconomyreacheda
peakinFebruary2020.3Infact,euroareaquarterlyrealGDPstagnatedinthelastquarterof2019,withindustrialproductionandtotalexportsfallingsignificantlyshortoftheirOctoberlevelsatthe
endoftheyear.Inthefirsttwomonthsof2020(i.e.aheadoftheCOVID-19shock),thelossesdid
notseemtohavebeenrecovered,accordingtothemonthlyGDPestimates.InFebruary2020–themonthbeforeeconomicactivitystartedtocontractsharplyinresponsetothecontainmentofthe
spreadofthecoronavirusintheeuroarea–onlyretailsaleswereatahigherlevelthaninOctober2019.AccordingtotheestimatedmonthlyrealGDPseries,economicactivityintheeuroareaagaindecreasedsharplyinApril2020,butgrewstronglyinMayandJuneandincreasedfurtherinthe
2QuarterlyrealGDPisbrokendownintomonthlyobservationsbyusingavariantoftheChowandLin
(1971)linearregressionmodel.Themonthlyindicatorsareindustrialproduction,deflatedretailsales
andgoodsexports.Thedatasampleis1970Q1-2022Q3.ThedataforquarterlyrealGDPandthe
monthlyindicatorsaretakenfromEurostatandarebackdatedwiththearea-widemodel(AWM)andtheOECDMainEconomicIndicatorsdatabases.IntheextendedBry-Boschanalgorithm,thethresholdforthedurationofexpansionsissetat14quarters(42months)andtheamplitudethresholdissetat1.7%.
3On29September2020,theBusinessCycleDatingCommitteeoftheCEPRdeterminedthatapeakinquarterlyeconomicactivityhadoccurredin2019Q4.WhiletheCommitteedoesnotprovideamonthlydating,italsostressedthattheeuroareahadprobablyreachedapeakinmonthlyeconomicactivityinFebruary2020,whichlagsthequarterlypeak.TheCommitteebasedthisdecisiononthetimingofthepandemicandthesharpdeclineinindustrialproductionandotherindicatorsinMarch2020.
ECBOccasionalPaperSeriesNo3548
summermonths,i.e.abusinesscycletroughoccurredinApril2020.WhilerealGDPintheeuro
areawassignificantlyaffectedbythefurtherwavesofthepandemicandtheassociatedrestrictionsinthewinterof2020-21,nofurtherrecessionoccurred,accordingtothemodel,whichisconsistentwiththeCEPR’sassessment.
1.1.1Univariateresults
BusinesscycledatingoftheEUcountries
GDPiswidelyacknowledgedtobethesinglemostimportantindicatorof
aggregateeconomicactivity.OnthebasisoftheloglevelofrealGDPandby
implementingthemodifiedBBapproach(see
Box2)
,weestablishabusinesscycledatingchronologyfortheeuroareaandEUcountries.
TheunderlyingdataforallcountriesistheEuropeanSystemofAccounts-2010(ESA-2010)withGDPatconstantmarketprices.TheEurostatnationalaccountsdatabaseprovidesharmonisedseriesfortheeuroareaandtheEUMemberStatessince1995,althoughforafewcountries–Finland,France,GermanyandtheUnitedKingdom–theEurostatdataareavailableforalongerperiod,whereasforothers,
notablyMalta,thesampleisshorter.TheadvantageofusingtherealGDPdatafromEurostatisthatthesetimeseriesareharmonisedacrosscountries,whilea
disadvantageistherelativelyshortsampleperiod(1995-2022)formostcountries.
Thealgorithmhighlightsthreemajorepisodesofsynchronisedrecessions
beingrelativelywidespreadacrosstheEUcountries.
Chart2
summarisesthechronologyafterapplyingtheunivariatemodifiedBBquarterly(MBBQ)algorithm
(see
Box2)
,showingexpansionsandcontractionsfortheeuroareaandtheEUMemberStates.TheidentifiedsynchronisedrecessionsaretheGlobalFinancial
Crisis(GFC),thesovereigndebtcrisisandthecontractiontriggeredbytheCOVID-19pandemic.Forthefirsttwoepisodes,CroatiaandGreeceshowonelong-lastingrecessionaryperiod,encompassingbothsub-periods.
Lookingattheeuroareabusinesscycleanditsphasessince1995,several
turningpointsareidentified
(Chart2)
.Whiletherewassomeweaknessin2003,possiblyadelayedresponsetotheburstingofthedot-combubbleandthe
subsequentrecessionin2001intheUnitedStates,thisdidnotleadtoaGDP
contractionforlongerthanaquarterintheeuroarea.Similarly,theCEPRidentifiesthefirsttwoquartersof2003asaslowgrowthperiod.TheGFChadawidespread
negativeeffectacrosstheEUcountriesfromthesecondquarterof2008onwards.
Betweenthepeakinthefirstquarterof2008andthetroughinthesecondquarterof2009,theeuroareaeconomyshrankby5.7%.Thesubsequentrecoverywas
relativelyshort-lived,lastingforonlyninequarters,comparedwithanaverageof29quartersforalleuroareaexpansions.Theeuroarearecessiontriggeredbythe
sovereigndebtcrisisstartedinthefourthquarterof2011andlasteduntilthefirst
quarterof2013,entailingasubstantialdeclineinconsumption,alongwiththedropinGDP,reflectingdeterioratingconfidenceandincreaseduncertainty.TheGDPdecline
ECBOccasionalPaperSeriesNo3549
wasstrongestinseveralsouthernEuropeancountries.Duringtherecoverythat
followed,growthratesweresimilartopre-GFCaverages.However,twoyearsof
uninterruptedgrowthcouldnotmakeupfortheaccumulatedlossescausedbythe
double-diprecession.Therewasnoreturntothepre-crisislevelofactivityuntilearly2015.During2019,theeuroareabusinesscyclewasinamaturephase,with
economicactivitydeceleratinginanumberofcountries.Sincethefirstquarterof
2020,andinparticularsinceMarch2020,theCOVID-19pandemicledtopolicy-
inducedwidespreadlockdownsandothercontainmentmeasuresthatentailedan
unprecedentedbroad-basedfallineconomicactivityacrosstheeuroarea.RealGDPdeclinedby3.7%inthefirstquarterof2020andbyacumulative15.1%inthefirst
halfof2020.
Chart2
BusinesscycledatingbasedontheunivariateMBBQ
Source:Eurostatandauthors’calculations.
Note:Contractions/recessionsaredepictedinred,whileexpansionsareinblue.ThedatingofCyprus,Denmark,Finland,Germany,Romania,andSlovakiaissubjecttoexpertjudgementforspecificperiods.Latestobservation:2022Q3.
Box2
IdentificationofturningpointsaccordingtotheMBBQalgorithm
PreparedbyVeaceslavGrigora?
TheMBBQalgorithmisaparametricapproachthatidentifiesthelocalpeaksandtroughsofthecycleofanygiventimeseries,byapplyingseveralsteps.First,itidentifieslocalmaximaand
minimaascandidatesforeconomicpeaksandtroughs.Second,itperformschecksontheidentifiedlocalcandidatestoensurethatthepointsmeetthecriteriaforturningpointsofthephasesofthe
economiccycleanddropsthosethatdonotmeetthesecriteria.Thesechecksconcernthe
ECBOccasionalPaperSeriesNo35410
minimumlengthoftheeconomicphase(L),theminimumlengthofthebusinesscycle(C)andtheproperalternationofpeaksandtroughs.Inaddition,athresholdparameter(U)overridesthephasedurationcriterionifthechangeintheseriesislargerthanthisthresholdlevel.Imposingthese
criteriaensuresthatthephasesofthebusinesscycleareproperlyidentified.
ChartA
VisualisationofparametersintheMBBQalgorithm
Source:Authors’illustration.
TheMBBQalgorithmstepsinanutshell:
I.Identifylocalmaximaandminimaascandidatesforeconomicpeaksandtroughs:
1.Localmaximum(P)atdatet:ifys<ytforallswitht-K<s<tandt+K>s>t.
2.Localminimum(T)atdatet:ifys>ytforallswitht-K<s<tandt+K>s>t.
II.Censortheidentifiedturningpoints(i.e.keeponlythosethatsatisfycert
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3D打印心臟補(bǔ)片的組織相容性評價
- 3D打印導(dǎo)板在神經(jīng)外科手術(shù)中的精準(zhǔn)固定技術(shù)
- 2025年寧波市鎮(zhèn)海區(qū)龍賽醫(yī)療集團(tuán)公開招聘編外工作人員備考題庫含答案詳解
- 3D可視化技術(shù)在神經(jīng)介入手術(shù)中的輔助價值
- 小清新總結(jié)匯報模板
- 2025年常熟市交通產(chǎn)業(yè)投資集團(tuán)有限公司(系統(tǒng))招聘14人備考題庫及參考答案詳解1套
- 2025年鄭州大學(xué)第二附屬醫(yī)院公開招聘員額制工作人員(碩士)23人備考題庫附答案詳解
- 2025年中國醫(yī)學(xué)科學(xué)院醫(yī)學(xué)實驗動物研究所第三批公開招聘工作人員備考題庫及參考答案詳解
- 2025年吉林省路橋工程(集團(tuán))有限公司西南地區(qū)項目部勞務(wù)派遣人員招聘13人備考題庫及完整答案詳解1套
- 2025年中路財產(chǎn)保險股份有限公司校園招聘6人備考題庫及參考答案詳解1套
- 2025大理州強(qiáng)制隔離戒毒所招聘輔警(5人)筆試考試備考題庫及答案解析
- 2025年安全培訓(xùn)計劃表
- 2026年榆林職業(yè)技術(shù)學(xué)院單招職業(yè)技能測試題庫參考答案詳解
- 2025年沈陽華晨專用車有限公司公開招聘筆試歷年參考題庫附帶答案詳解
- 2026(蘇教版)數(shù)學(xué)五上期末復(fù)習(xí)大全(知識梳理+易錯題+壓軸題+模擬卷)
- 垃圾中轉(zhuǎn)站機(jī)械設(shè)備日常維護(hù)操作指南
- 單證主管助理客戶服務(wù)能力提升方案
- 汽車行業(yè)可信數(shù)據(jù)空間方案
- 畜牧業(yè)機(jī)械化培訓(xùn)課件
- 工程質(zhì)量管理工作制度
- 云南交投集團(tuán)筆試試題及答案
評論
0/150
提交評論