版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
熱點(diǎn)2-1函數(shù)的單調(diào)性、奇偶性、周期性與對(duì)稱性函數(shù)的性質(zhì)是函數(shù)學(xué)習(xí)中非常重要的內(nèi)容,對(duì)于選擇題和填空題部分,重點(diǎn)考查基本初等函數(shù)的單調(diào)性,利用性質(zhì)判斷函數(shù)單調(diào)性及求最值、解不等式、求參數(shù)范圍等,難度較小,屬于基礎(chǔ)題;對(duì)于解答題部分,一般與導(dǎo)數(shù)結(jié)合,考查難度較大?!绢}型1判斷函數(shù)的單調(diào)性】滿分技巧判斷函數(shù)的單調(diào)性的四種方法1、定義法:按照取值、取值變形、定號(hào)、下結(jié)論的步驟判斷或證明函數(shù)在區(qū)間上的單調(diào)性;2、圖象法:對(duì)于熟悉的基本初等函數(shù)(或由基本初等函數(shù)構(gòu)成的分段函數(shù)),可以通過利用圖象來判斷單調(diào)性;3、導(dǎo)數(shù)法:利用求導(dǎo)的方法(如有ex,lnx的超越函數(shù))判斷函數(shù)的單調(diào)性;4、復(fù)合法:針對(duì)一些簡(jiǎn)單的復(fù)合函數(shù),可以利用符合函數(shù)的單調(diào)性法則(同增異減)來確定單調(diào)性。【例1】(2023·新疆烏魯木齊·高三兵團(tuán)二中??茧A段練習(xí))下列函數(shù)中是偶函數(shù)且在區(qū)間SKIPIF1<0上是增函數(shù)的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】對(duì)于A,SKIPIF1<0,故SKIPIF1<0不是偶函數(shù),不符題意;對(duì)于B,因?yàn)閮绾瘮?shù)滿足SKIPIF1<0,且其定義域?yàn)镾KIPIF1<0關(guān)于原點(diǎn)對(duì)稱,所以SKIPIF1<0是偶函數(shù),且SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上是增函數(shù),符合題意;對(duì)于C,SKIPIF1<0,故SKIPIF1<0不是偶函數(shù),不符題意;對(duì)于D,SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上不是增函數(shù),不符題意.故選:B.【變式1-1】(2023·安徽·校聯(lián)考模擬預(yù)測(cè))已知SKIPIF1<0是定義在SKIPIF1<0上的偶函數(shù),函數(shù)SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞減,則()A.SKIPIF1<0在SKIPIF1<0單調(diào)遞減B.SKIPIF1<0在SKIPIF1<0單調(diào)遞減C.SKIPIF1<0在SKIPIF1<0單調(diào)遞減D.SKIPIF1<0在SKIPIF1<0單調(diào)遞減【答案】C【解析】由題意知SKIPIF1<0在SKIPIF1<0單調(diào)遞增,SKIPIF1<0為奇函數(shù),在SKIPIF1<0上單調(diào)遞減.設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故A錯(cuò)誤,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在SKIPIF1<0單調(diào)遞增,故B錯(cuò)誤;設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0單調(diào)遞減,故C正確;取SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0不單調(diào)遞減,故D錯(cuò)誤.故選:C.【變式1-2】(2023·海南??凇とA僑中學(xué)??级#┮阎己瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,則函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是.【答案】SKIPIF1<0【解析】因?yàn)榕己瘮?shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,則函數(shù)SKIPIF1<0的圖象是由函數(shù)SKIPIF1<0的圖象向右平移2個(gè)單位長(zhǎng)度得到,所以函數(shù)SKIPIF1<0的單調(diào)增區(qū)間是SKIPIF1<0.【變式1-3】(2023·全國(guó)·高三專題練習(xí))已知函數(shù)SKIPIF1<0的定義域?yàn)镽,對(duì)任意SKIPIF1<0,SKIPIF1<0且SKIPIF1<0,都有SKIPIF1<0,則下列說法正確的是()A.SKIPIF1<0是增函數(shù)B.SKIPIF1<0是減函數(shù)C.SKIPIF1<0是增函數(shù)D.SKIPIF1<0是減函數(shù)【答案】A【解析】不妨令SKIPIF1<0,SKIPIF1<0SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,∴SKIPIF1<0是增函數(shù).故選:A.【變式1-4】(2023·江蘇揚(yáng)州·高三校聯(lián)考期末)已知函數(shù)SKIPIF1<0在定義域中滿足SKIPIF1<0,且在SKIPIF1<0上單調(diào)遞減,則SKIPIF1<0可能是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】對(duì)于A,函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0,A不是;對(duì)于B,函數(shù)SKIPIF1<0的定義域是R,而SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,B不是;對(duì)于C,函數(shù)SKIPIF1<0的定義域是R,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因SKIPIF1<0,則SKIPIF1<0,有SKIPIF1<0,即有SKIPIF1<0,因此SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,C正確;對(duì)于D,函數(shù)SKIPIF1<0的定義域是SKIPIF1<0,SKIPIF1<0,D不是.故選:C【題型2利用函數(shù)的單調(diào)性求參數(shù)】滿分技巧利用單調(diào)性求參數(shù)的三種情況:1、直接利用題意條件和單調(diào)性代入求參;2、分段函數(shù)求參,每段單調(diào)性都符合題意,相鄰兩段自變量臨界點(diǎn)的函數(shù)值取到等號(hào);3、復(fù)合函數(shù)求參,注意要滿足定義域要求,通過分離常數(shù)法或構(gòu)造函數(shù)法轉(zhuǎn)化成恒成立或有解問題?!纠?】(2023·四川南充·統(tǒng)考模擬預(yù)測(cè))函數(shù)SKIPIF1<0在SKIPIF1<0上是減函數(shù)的一個(gè)充分不必要條件是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】SKIPIF1<0在SKIPIF1<0上是減函數(shù),只需要SKIPIF1<0即可,若SKIPIF1<0,則SKIPIF1<0,成立;若SKIPIF1<0,則SKIPIF1<0是二次函數(shù),由二次函數(shù)的性質(zhì)可得,SKIPIF1<0時(shí)SKIPIF1<0恒成立.若SKIPIF1<0,當(dāng)SKIPIF1<0和SKIPIF1<0時(shí),SKIPIF1<0,故不成立.所以,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,而SKIPIF1<0是SKIPIF1<0的充分不必要條件.故選:A.【變式2-1】(2023·江蘇淮安·高三??茧A段練習(xí))使得“函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減”成立的一個(gè)充分不必要條件可以是()A.SKIPIF1<0B.SKIPIF1<01C.SKIPIF1<0D.SKIPIF1<00【答案】D【解析】由于函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,解得SKIPIF1<0,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞減的充要條件為SKIPIF1<0,那么其成立的一個(gè)充分不必要條件可以是SKIPIF1<0.故選:D.【變式2-2】(2023·全國(guó)·高三校聯(lián)考階段練習(xí))若函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則實(shí)數(shù)SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】設(shè)SKIPIF1<0,則SKIPIF1<0即為SKIPIF1<0,而SKIPIF1<0圖像的對(duì)稱軸為SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0的增區(qū)間為SKIPIF1<0,而函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,故SKIPIF1<0,即實(shí)數(shù)SKIPIF1<0的取值范圍為SKIPIF1<0,故選:B【變式2-3】(2023·貴州黔東南·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0,都有SKIPIF1<0成立,則SKIPIF1<0的取值范圍為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】因?yàn)閷?duì)于SKIPIF1<0,都有SKIPIF1<0成立,所以函數(shù)SKIPIF1<0是增函數(shù),則函數(shù)SKIPIF1<0和SKIPIF1<0均為增函數(shù),且有SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,故選:C.【變式2-4】(2023·甘肅白銀·高三??茧A段練習(xí))已知SKIPIF1<0是R上的單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍為.【答案】SKIPIF1<0【解析】由題意可得SKIPIF1<0,解得SKIPIF1<0.【題型3函數(shù)的奇偶性及應(yīng)用】滿分技巧1、常見的奇函數(shù)與偶函數(shù)(1)SKIPIF1<0(SKIPIF1<0)為偶函數(shù);(2)SKIPIF1<0(SKIPIF1<0)為奇函數(shù);(3)SKIPIF1<0(SKIPIF1<0)為奇函數(shù);(4)SKIPIF1<0(SKIPIF1<0)為奇函數(shù);(5)SKIPIF1<0(SKIPIF1<0)為奇函數(shù);(6)SKIPIF1<0為偶函數(shù);(7)SKIPIF1<0為奇函數(shù);2、函數(shù)奇偶性的應(yīng)用(1)求函數(shù)值:將待求值利用就行轉(zhuǎn)化為已知區(qū)間上的函數(shù)值求解;(2)求解析式:將待求區(qū)間上的自變量轉(zhuǎn)化到已知解析式的區(qū)間上,再利用奇偶性的定義求出;(3)求參數(shù):利用待定系數(shù)法求解,根據(jù)SKIPIF1<0得到關(guān)于待求參數(shù)的恒等式,由系數(shù)的對(duì)等性得參數(shù)的值或方程(組),進(jìn)而求出參數(shù)的值?!纠?】(2023·山東濰坊·統(tǒng)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,下列函數(shù)是奇函數(shù)的是()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】D【解析】由于SKIPIF1<0,定義域?yàn)镾KIPIF1<0故SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0不是奇函數(shù),A錯(cuò)誤;SKIPIF1<0,定義域?yàn)镾KIPIF1<0,不關(guān)于原點(diǎn)對(duì)稱,即SKIPIF1<0不是奇函數(shù),B錯(cuò)誤;SKIPIF1<0,定義域?yàn)镾KIPIF1<0,不關(guān)于原點(diǎn)對(duì)稱,即SKIPIF1<0不是奇函數(shù),C錯(cuò)誤;SKIPIF1<0,定義域?yàn)镾KIPIF1<0,SKIPIF1<0,即SKIPIF1<0為奇函數(shù),D正確,故選:D【變式3-1】(2023·貴州·高三凱里一中校聯(lián)考開學(xué)考試)設(shè)函數(shù)SKIPIF1<0為奇函數(shù),則實(shí)數(shù)SKIPIF1<0的值為()A.SKIPIF1<0B.0C.1D.2【答案】B【解析】函數(shù)SKIPIF1<0有意義,有SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,則函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),又SKIPIF1<0為奇函數(shù),則SKIPIF1<0為偶函數(shù),有SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:B.【變式3-2】(2023·福建泉州·高三培元中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0,若SKIPIF1<0為奇函數(shù),且SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】由題意可得當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0為SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0(舍去),或SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故選:A.【變式3-3】(2023·黑龍江哈爾濱·高三哈爾濱三中校考期末)已知SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),且滿足SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】由題意知,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:B【變式3-4】(2023·江西·高三校聯(lián)考階段練習(xí))若奇函數(shù)SKIPIF1<0,則SKIPIF1<0()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0為奇函數(shù),所以SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:A【題型4奇函數(shù)+常數(shù)求值】滿分技巧已知SKIPIF1<0為奇函數(shù),則SKIPIF1<0,SKIPIF1<0設(shè)SKIPIF1<0(其中SKIPIF1<0為常數(shù)),則SKIPIF1<0,SKIPIF1<0【例4】(2023·四川達(dá)州·統(tǒng)考一模)函數(shù)SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為.【答案】0【解析】令SKIPIF1<0,定義域?yàn)镾KIPIF1<0或SKIPIF1<0且SKIPIF1<0,關(guān)于原點(diǎn)對(duì)稱,則SKIPIF1<0,故SKIPIF1<0為奇函數(shù),又SKIPIF1<0,故SKIPIF1<0,解得SKIPIF1<0.【變式4-1】(2023·重慶九龍坡·高三四川外國(guó)語大學(xué)附屬外國(guó)語學(xué)校??茧A段練習(xí))函數(shù)SKIPIF1<0為奇函數(shù),且SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】因?yàn)楹瘮?shù)SKIPIF1<0為奇函數(shù),所以SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0(舍去),故SKIPIF1<0,因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.【變式4-2】(2023·福建莆田·高三莆田第十中學(xué)??计谥校┖瘮?shù)SKIPIF1<0的最大值為SKIPIF1<0,最小值為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】因?yàn)镾KIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0是SKIPIF1<0上的奇函數(shù),最大值為SKIPIF1<0,最小值為SKIPIF1<0,所以SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0.【變式4-3】(2023·江蘇蘇州·高三常熟中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值和最小值分別為M,N,則SKIPIF1<0()A.SKIPIF1<0B.0C.2D.4【答案】D【解析】令SKIPIF1<0,所以SKIPIF1<0最大值和最小值分別為SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0為奇函數(shù),故SKIPIF1<0的圖象關(guān)于原點(diǎn)對(duì)稱,故SKIPIF1<0,故選:D【變式4-4】(2023·全國(guó)·高三專題練習(xí))若關(guān)于x的函數(shù)SKIPIF1<0的最大值和最小值之和為4,則SKIPIF1<0.【答案】2【解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0的定義域?yàn)镾KIPIF1<0.又SKIPIF1<0SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,∴g(x)為奇函數(shù);設(shè)g(x)的最大數(shù)值為M,最小值為N,則SKIPIF1<0,則SKIPIF1<0的最大數(shù)值為SKIPIF1<0,最小值為SKIPIF1<0,∴SKIPIF1<0的最大值與最小值之和為SKIPIF1<0,得SKIPIF1<0.【題型5函數(shù)的周期性及應(yīng)用】滿分技巧(是不為0的常數(shù))(1)若,則;(2)若,則;(3)若,則;(4)若,則;(5)若,則;(6)若,則();【例5】(2023·云南昭通·校聯(lián)考模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0是定義域?yàn)镾KIPIF1<0上的奇函數(shù),滿足SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0()A.2B.3C.4D.5【答案】A【解析】因?yàn)楹瘮?shù)SKIPIF1<0是定義域?yàn)镾KIPIF1<0上的奇函數(shù),則SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,因此SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0,于是函數(shù)SKIPIF1<0是以4為周期的周期函數(shù),由SKIPIF1<0,得SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,從而SKIPIF1<0,所以SKIPIF1<0.故選:A【變式5-1】(2023·山東菏澤·高三??茧A段練習(xí))已知定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0()A.0B.SKIPIF1<0C.SKIPIF1<0D.3【答案】A【解析】因?yàn)镾KIPIF1<0在SKIPIF1<0上的奇函數(shù),且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0的周期為SKIPIF1<0,所以SKIPIF1<0,故選:A【變式5-2】(2023·全國(guó)·模擬預(yù)測(cè))設(shè)函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,SKIPIF1<0為奇函數(shù),SKIPIF1<0為偶函數(shù),若SKIPIF1<0,則SKIPIF1<0.【答案】5【解析】由SKIPIF1<0為奇函數(shù),可得SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,又SKIPIF1<0的定義域?yàn)镾KIPIF1<0,則有SKIPIF1<0.由SKIPIF1<0為偶函數(shù)得SKIPIF1<0,則SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0,從而SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0是周期為4的偶函數(shù),所以SKIPIF1<0.而SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.【變式5-3】(2023·河南南陽·高三統(tǒng)考期中)奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,函數(shù)周期為SKIPIF1<0,SKIPIF1<0.【變式5-4】(2023·全國(guó)·模擬預(yù)測(cè))已知定義域?yàn)镾KIPIF1<0的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0.【答案】SKIPIF1<0【解析】當(dāng)SKIPIF1<0時(shí),由SKIPIF1<0可得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0是周期為SKIPIF1<0的周期函數(shù).因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0.【題型6函數(shù)的對(duì)稱性及應(yīng)用】滿分技巧1、關(guān)于線對(duì)稱:若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,特別地,當(dāng)a=b=0時(shí),函數(shù)SKIPIF1<0關(guān)于y軸對(duì)稱,此時(shí)函數(shù)SKIPIF1<0是偶函數(shù).2、關(guān)于點(diǎn)對(duì)稱:若函數(shù)SKIPIF1<0滿足,則函數(shù)SKIPIF1<0關(guān)于點(diǎn)(a,b)對(duì)稱,特別地,當(dāng)a=0,b=0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0關(guān)于原點(diǎn)對(duì)稱,此時(shí)函數(shù)SKIPIF1<0是奇函數(shù).【例6】(2023·全國(guó)·高三專題練習(xí))若函數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的圖象的對(duì)稱軸是()A.SKIPIF1<0軸B.SKIPIF1<0軸C.直線SKIPIF1<0D.不能確定【答案】B【解析】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),所以SKIPIF1<0的圖象的對(duì)稱軸為SKIPIF1<0軸.故選:B【變式6-1】(2023·四川眉山·高三仁壽一中??茧A段練習(xí))定義在SKIPIF1<0上的奇函數(shù)SKIPIF1<0滿足SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上所有零點(diǎn)之和為()A.16B.32C.36D.48【答案】B【解析】依題意函數(shù)SKIPIF1<0為定義在SKIPIF1<0上的奇函數(shù),所以SKIPIF1<0,又SKIPIF1<0,所以函數(shù)SKIPIF1<0關(guān)于SKIPIF1<0軸對(duì)稱,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以函數(shù)SKIPIF1<0是周期為4的周期函數(shù),且函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0中心對(duì)稱;令SKIPIF1<0,得SKIPIF1<0,由反比例函數(shù)性質(zhì)知函數(shù)SKIPIF1<0的圖象關(guān)于SKIPIF1<0中心對(duì)稱,又當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,結(jié)合對(duì)稱性和周期性作出函數(shù)SKIPIF1<0和SKIPIF1<0的圖象,如圖所示,由圖可知,函數(shù)SKIPIF1<0和SKIPIF1<0的圖象有8個(gè)交點(diǎn),且交點(diǎn)關(guān)于SKIPIF1<0中心對(duì)稱,所以函數(shù)SKIPIF1<0在區(qū)間SKIPIF1<0上所有零點(diǎn)之和為SKIPIF1<0.故選:B【變式6-2】(2023·陜西銅川·高三??计谀┮阎瘮?shù)SKIPIF1<0,則方程SKIPIF1<0在區(qū)間SKIPIF1<0上的所有實(shí)根之和為()A.0B.3C.6D.12【答案】C【解析】由題意得,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的圖象關(guān)于SKIPIF1<0對(duì)稱;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),令SKIPIF1<0可得SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,在同一直角坐標(biāo)系中畫出SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上有且僅有3個(gè)交點(diǎn),所以所有的實(shí)根之和為SKIPIF1<0,故選:C.【變式6-3】(2023·安徽·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,若實(shí)數(shù)SKIPIF1<0滿足SKIPIF1<0,則SKIPIF1<0的最大值為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由SKIPIF1<0,記SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0單調(diào)遞增,SKIPIF1<0單調(diào)遞增,則SKIPIF1<0與SKIPIF1<0都關(guān)于SKIPIF1<0中心對(duì)稱且為SKIPIF1<0上的增函數(shù),所以SKIPIF1<0,故SKIPIF1<0關(guān)于SKIPIF1<0中心對(duì)稱且為SKIPIF1<0上增函數(shù),則由SKIPIF1<0,得SKIPIF1<0,可得SKIPIF1<0,記SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0取等號(hào),故SKIPIF1<0的最大值為SKIPIF1<0.故選:C.【變式6-4】(2023·上?!じ呷h行中學(xué)??茧A段練習(xí))已知函數(shù)SKIPIF1<0與函數(shù)SKIPIF1<0的圖象交于點(diǎn)M、N、P,此三點(diǎn)中最遠(yuǎn)的兩點(diǎn)間距離為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0.【答案】SKIPIF1<0【解析】不妨記SKIPIF1<0,SKIPIF1<0,函數(shù)SKIPIF1<0,與SKIPIF1<0是奇函數(shù)且關(guān)于坐標(biāo)原點(diǎn)對(duì)稱,所以SKIPIF1<0兩個(gè)函數(shù)均是以點(diǎn)SKIPIF1<0為對(duì)稱中心的函數(shù),所以三個(gè)交點(diǎn)其中一個(gè)必是點(diǎn)SKIPIF1<0,另外兩個(gè)點(diǎn)關(guān)于點(diǎn)SKIPIF1<0對(duì)稱,不妨記SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,SKIPIF1<0.【題型7利用函數(shù)的性質(zhì)比較大小】【例7】(2023·江西上饒·高三??茧A段練習(xí))設(shè)SKIPIF1<0是定義域?yàn)镾KIPIF1<0的偶函數(shù),且在SKIPIF1<0單調(diào)遞減,設(shè)SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】SKIPIF1<0,即SKIPIF1<0,由于函數(shù)SKIPIF1<0是偶函數(shù),在區(qū)間SKIPIF1<0上單調(diào)遞減,所以在SKIPIF1<0上單調(diào)遞增,則SKIPIF1<0,故選:B【變式7-1】(2023·廣西·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0則函數(shù)SKIPIF1<0定義域?yàn)镾KIPIF1<0,且滿足SKIPIF1<0,即SKIPIF1<0,所以函數(shù)SKIPIF1<0為奇函數(shù),又由函數(shù)SKIPIF1<0,SKIPIF1<0都是SKIPIF1<0上單調(diào)遞增函數(shù),所以SKIPIF1<0在SKIPIF1<0單調(diào)遞增,因?yàn)镾KIPIF1<0且SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0單調(diào)遞增,所以SKIPIF1<0.故選:A.【變式7-2】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.若SKIPIF1<0為偶函數(shù),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0為偶函數(shù),則SKIPIF1<0,可知SKIPIF1<0的對(duì)稱軸為SKIPIF1<0,又因?yàn)镾KIPIF1<0均只有一條對(duì)稱軸SKIPIF1<0,可知SKIPIF1<0只有一條對(duì)稱軸SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上為增函數(shù),則SKIPIF1<0在SKIPIF1<0上為增函數(shù),令SKIPIF1<0,則SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,可得SKIPIF1<0,即SKIPIF1<0,則SKIPIF1<0;由SKIPIF1<0,可得SKIPIF1<0,則SKIPIF1<0;即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0.故選:A.【變式7-3】(2023·山東菏澤·高三??茧A段練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小關(guān)系為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】因?yàn)镾KIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,則SKIPIF1<0,即SKIPIF1<0;SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞減,則SKIPIF1<0,所以SKIPIF1<0;綜上所述:SKIPIF1<0.又因?yàn)镾KIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增,所以SKIPIF1<0.故選:A.【變式7-4】(2023·河北滄州·高三泊頭市第一中學(xué)校聯(lián)考階段練習(xí))已知SKIPIF1<0是定義域?yàn)镾KIPIF1<0的單調(diào)函數(shù),且SKIPIF1<0,若SKIPIF1<0,則()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】C【解析】由已知SKIPIF1<0,令SKIPIF1<0,又因?yàn)镾KIPIF1<0是定義域?yàn)镾KIPIF1<0的單調(diào)函數(shù).所以存在唯一SKIPIF1<0,使SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.如圖所示作出SKIPIF1<0與SKIPIF1<0的圖象,因?yàn)樗鼈兓榉春瘮?shù),則圖象關(guān)于直線SKIPIF1<0對(duì)稱,由SKIPIF1<0,在圖中作直線SKIPIF1<0,則與SKIPIF1<0的交點(diǎn)的橫坐標(biāo)依次為SKIPIF1<0,可得SKIPIF1<0,又因?yàn)镾KIPIF1<0是單調(diào)遞增的,所以SKIPIF1<0,故選:C.【題型8利用函數(shù)的性質(zhì)解不等式】滿分技巧解決此類問題時(shí)一定要充分利用已知的條件,把已知不等式轉(zhuǎn)化成SKIPIF1<0或SKIPIF1<0的形式,再根據(jù)奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上的單調(diào)性相同,偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱的區(qū)間上的單調(diào)性相反,列出不等式(組),同時(shí)不能漏掉函數(shù)自身定義域?qū)?shù)的影響?!纠?】(2023·海南·高三校聯(lián)考階段練習(xí))已知SKIPIF1<0是偶函數(shù),SKIPIF1<0,且當(dāng)SKIPIF1<0時(shí),SKIPIF1<0單調(diào)遞增,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】由題意可知,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,由已知可得SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則SKIPIF1<0,由已知可得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.綜上,可得不等式SKIPIF1<0的解集為SKIPIF1<0.故選:A【變式8-1】(2023·全國(guó)·高三貴溪市實(shí)驗(yàn)中學(xué)校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】A【解析】SKIPIF1<0的定義域?yàn)镾KIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0為偶函數(shù),又當(dāng)SKIPIF1<0,由于函數(shù)SKIPIF1<0均為單調(diào)遞增函數(shù),所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0,SKIPIF1<0.故選:A.【變式8-2】(2023·河北滄州·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),對(duì)任意正數(shù)SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0,且SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,則不等式SKIPIF1<0的解集為()A.SKIPIF1<0B.SKIPIF1<0C.SKIPIF1<0D.SKIPIF1<0【答案】B【解析】令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,則SKIPIF1<0,不妨取任意正數(shù)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,又SKIPIF1<0是定義在SKIPIF1<0上的奇函數(shù),故SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增,令SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,∴SKIPIF1<0,又因?yàn)镾KIPIF1<0,即SKIPIF1<0,由SKIPIF1<0和SKIPIF1<0,結(jié)合函數(shù)單調(diào)性可以得到SKIPIF1<0或SKIPIF1<0,故選:B.【變式8-3】(2023·四川·高三校聯(lián)考階段練習(xí))已知函數(shù)SKIPIF1<0,若對(duì)任意的SKIPIF1<0,SKIPIF1<0恒成立,則a的取值范圍為.【答案】SKIPIF1<0【解析】由題易知,SKIPIF1<0的定義域?yàn)镽,因?yàn)镾KIPIF1<0,所以SKIPIF1<0為奇函數(shù).又SKIPIF1<0,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.若對(duì)任意的SKIPIF1<0,SKIPIF1<0恒成立,即SKIPIF1<0,又SKIPIF1<0為奇函數(shù),得SKIPIF1<0SKIPIF1<0,因?yàn)镾KIPIF1<0在SKIPIF1<0上單調(diào)遞減,所以SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,即SKIPIF1<0SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0不恒成立,不符合題意;當(dāng)SKIPIF1<0時(shí),有SKIPIF1<0,解得SKIPIF1<0.綜上,a的取值范圍為SKIPIF1<0.【變式8-4】(2023·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則不等式SKIPIF1<0的解集為.【答案】SKIPIF1<0SKIPIF1<0【解析】由題可得,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0為偶函數(shù).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,此時(shí)SKIPIF1<0恒成立,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,由SKIPIF1<0為偶函數(shù)可得,函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減.又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0,解得S
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB 6721-2025生產(chǎn)安全事故直接經(jīng)濟(jì)損失統(tǒng)計(jì)要求
- 2025-2026學(xué)年統(tǒng)編版二年級(jí)語文下冊(cè)第一次月考達(dá)標(biāo)訓(xùn)練卷(A)(含答案)
- 飛行技術(shù)管理部介紹
- 飛秒激光技術(shù)
- 2026年人力資源管理師人才測(cè)評(píng)工具應(yīng)用知識(shí)練習(xí)(含解析)
- 2026重慶飛駛特人力資源管理有限公司人工智能訓(xùn)練項(xiàng)目招聘5人參考考試題庫及答案解析
- 室內(nèi)裝潢公司數(shù)據(jù)管理制度
- 2026貴州省市兩級(jí)機(jī)關(guān)遴選公務(wù)員備考考試試題及答案解析
- 沉井護(hù)壁施工方案(3篇)
- 云南圍堰施工方案(3篇)
- 2026元旦主題班會(huì):馬年猜猜樂新春祝福版 教學(xué)課件
- 醫(yī)院內(nèi)控制度
- 高一英語作業(yè)反饋與改進(jìn)計(jì)劃
- 高標(biāo)準(zhǔn)農(nóng)田建設(shè)項(xiàng)目驗(yàn)收技術(shù)方案
- 醫(yī)療器器械年終總結(jié)
- 浙江省杭州市富陽區(qū)2023-2024學(xué)年四年級(jí)上學(xué)期語文期末試卷
- 環(huán)境影響評(píng)估投標(biāo)方案(技術(shù)方案)
- JTG-T3651-2022公路鋼結(jié)構(gòu)橋梁制造和安裝施工規(guī)范
- 河南中美鋁業(yè)有限公司登封市陳樓鋁土礦礦山地質(zhì)環(huán)境保護(hù)與土地復(fù)墾方案
- 海南省定安縣龍河鎮(zhèn)大嶺建筑用花崗巖礦山 環(huán)評(píng)報(bào)告
- 大學(xué)生畢業(yè)論文寫作教程全套教學(xué)課件
評(píng)論
0/150
提交評(píng)論