版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025屆安徽六校教育研究會(huì)高考數(shù)學(xué)試題模擬題及解析(全國(guó)Ⅰ卷)請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.2.設(shè),則(
)A.10 B.11 C.12 D.133.已知某幾何體的三視圖如右圖所示,則該幾何體的體積為()A.3 B. C. D.4.已知某口袋中有3個(gè)白球和個(gè)黑球(),現(xiàn)從中隨機(jī)取出一球,再換回一個(gè)不同顏色的球(即若取出的是白球,則放回一個(gè)黑球;若取出的是黑球,則放回一個(gè)白球),記換好球后袋中白球的個(gè)數(shù)是.若,則=()A. B.1 C. D.25.已知角的終邊經(jīng)過(guò)點(diǎn),則A. B.C. D.6.已知等差數(shù)列中,若,則此數(shù)列中一定為0的是()A. B. C. D.7.設(shè)非零向量,,,滿(mǎn)足,,且與的夾角為,則“”是“”的().A.充分非必要條件 B.必要非充分條件C.充分必要條件 D.既不充分也不必要條件8.一個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的體積為()A. B.C. D.9.“”是“函數(shù)(為常數(shù))為冪函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件10.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.18011.已知函數(shù)()的部分圖象如圖所示.則()A. B.C. D.12.已知函數(shù),則()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列中,為其前項(xiàng)和,,,則_________,_________.14.在△ABC中,a=3,,B=2A,則cosA=_____.15.的展開(kāi)式中,若的奇數(shù)次冪的項(xiàng)的系數(shù)之和為32,則________.16.已知函數(shù),若的最小值為,則實(shí)數(shù)的取值范圍是_________三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)某省新課改后某校為預(yù)測(cè)2020屆高三畢業(yè)班的本科上線(xiàn)情況,從該校上一屆高三(1)班到高三(5)班隨機(jī)抽取50人,得到各班抽取的人數(shù)和其中本科上線(xiàn)人數(shù),并將抽取數(shù)據(jù)制成下面的條形統(tǒng)計(jì)圖.(1)根據(jù)條形統(tǒng)計(jì)圖,估計(jì)本屆高三學(xué)生本科上線(xiàn)率.(2)已知該省甲市2020屆高考考生人數(shù)為4萬(wàn),假設(shè)以(1)中的本科上線(xiàn)率作為甲市每個(gè)考生本科上線(xiàn)的概率.(i)若從甲市隨機(jī)抽取10名高三學(xué)生,求恰有8名學(xué)生達(dá)到本科線(xiàn)的概率(結(jié)果精確到0.01);(ii)已知該省乙市2020屆高考考生人數(shù)為3.6萬(wàn),假設(shè)該市每個(gè)考生本科上線(xiàn)率均為,若2020屆高考本科上線(xiàn)人數(shù)乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數(shù)據(jù):取,.18.(12分)如圖,已知三棱柱中,與是全等的等邊三角形.(1)求證:;(2)若,求二面角的余弦值.19.(12分)已知直線(xiàn)是曲線(xiàn)的切線(xiàn).(1)求函數(shù)的解析式,(2)若,證明:對(duì)于任意,有且僅有一個(gè)零點(diǎn).20.(12分)已知函數(shù),.(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;(2)求函數(shù)的單調(diào)區(qū)間;(3)判斷函數(shù)的零點(diǎn)個(gè)數(shù).21.(12分)已知,,,,證明:(1);(2).22.(10分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線(xiàn)上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢(shì),從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線(xiàn)與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.2.B【解析】
根據(jù)題中給出的分段函數(shù),只要將問(wèn)題轉(zhuǎn)化為求x≥10內(nèi)的函數(shù)值,代入即可求出其值.【詳解】∵f(x),∴f(5)=f[f(1)]=f(9)=f[f(15)]=f(13)=1.故選:B.本題主要考查了分段函數(shù)中求函數(shù)的值,屬于基礎(chǔ)題.3.B【解析】由三視圖知:幾何體是直三棱柱消去一個(gè)三棱錐,如圖:
直三棱柱的體積為,消去的三棱錐的體積為,
∴幾何體的體積,故選B.點(diǎn)睛:本題考查了由三視圖求幾何體的體積,根據(jù)三視圖判斷幾何體的形狀及相關(guān)幾何量的數(shù)據(jù)是解答此類(lèi)問(wèn)題的關(guān)鍵;幾何體是直三棱柱消去一個(gè)三棱錐,結(jié)合直觀(guān)圖分別求出直三棱柱的體積和消去的三棱錐的體積,相減可得幾何體的體積.4.B【解析】由題意或4,則,故選B.5.D【解析】因?yàn)榻堑慕K邊經(jīng)過(guò)點(diǎn),所以,則,即.故選D.6.A【解析】
將已知條件轉(zhuǎn)化為的形式,由此確定數(shù)列為的項(xiàng).【詳解】由于等差數(shù)列中,所以,化簡(jiǎn)得,所以為.故選:A本小題主要考查等差數(shù)列的基本量計(jì)算,屬于基礎(chǔ)題.7.C【解析】
利用數(shù)量積的定義可得,即可判斷出結(jié)論.【詳解】解:,,,解得,,,解得,“”是“”的充分必要條件.故選:C.本題主要考查平面向量數(shù)量積的應(yīng)用,考查推理能力與計(jì)算能力,屬于基礎(chǔ)題.8.B【解析】
還原幾何體可知原幾何體為半個(gè)圓柱和一個(gè)四棱錐組成的組合體,分別求解兩個(gè)部分的體積,加和得到結(jié)果.【詳解】由三視圖還原可知,原幾何體下半部分為半個(gè)圓柱,上半部分為一個(gè)四棱錐半個(gè)圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項(xiàng):本題考查三視圖的還原、組合體體積的求解問(wèn)題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.9.A【解析】
根據(jù)冪函數(shù)定義,求得的值,結(jié)合充分條件與必要條件的概念即可判斷.【詳解】∵當(dāng)函數(shù)為冪函數(shù)時(shí),,解得或,∴“”是“函數(shù)為冪函數(shù)”的充分不必要條件.故選:A.本題考查了充分必要條件的概念和判斷,冪函數(shù)定義的應(yīng)用,屬于基礎(chǔ)題.10.A【解析】
因?yàn)?,可得,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.11.C【解析】
由圖象可知,可解得,利用三角恒等變換化簡(jiǎn)解析式可得,令,即可求得.【詳解】依題意,,即,解得;因?yàn)樗?,?dāng)時(shí),.故選:C.本題主要考查了由三角函數(shù)的圖象求解析式和已知函數(shù)值求自變量,考查三角恒等變換在三角函數(shù)化簡(jiǎn)中的應(yīng)用,難度一般.12.C【解析】
結(jié)合分段函數(shù)的解析式,先求出,進(jìn)而可求出.【詳解】由題意可得,則.故選:C.本題考查了求函數(shù)的值,考查了分段函數(shù)的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.8(寫(xiě)為也得分)【解析】
由,得,.當(dāng)時(shí),,所以,所以的奇數(shù)項(xiàng)是以1為首項(xiàng),以2為公比的等比數(shù)列;其偶數(shù)項(xiàng)是以2為首項(xiàng),以2為公比的等比數(shù)列.則,.14.【解析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計(jì)算求值得解.【詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.15.【解析】試題分析:由已知得,故的展開(kāi)式中x的奇數(shù)次冪項(xiàng)分別為,,,,,其系數(shù)之和為,解得.考點(diǎn):二項(xiàng)式定理.16.【解析】
,可得在時(shí),最小值為,時(shí),要使得最小值為,則對(duì)稱(chēng)軸在1的右邊,且,求解出即滿(mǎn)足最小值為.【詳解】當(dāng),,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.當(dāng)時(shí),為二次函數(shù),要想在處取最小,則對(duì)稱(chēng)軸要滿(mǎn)足并且,即,解得.本題考查分段函數(shù)的最值問(wèn)題,對(duì)每段函數(shù)先進(jìn)行分類(lèi)討論,找到每段的最小值,然后再對(duì)兩段函數(shù)的最小值進(jìn)行比較,得到結(jié)果,題目較綜合,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線(xiàn)人數(shù)除以總?cè)藬?shù)求解;(2)(i)利用二項(xiàng)分布求解;(ii)甲、乙兩市上線(xiàn)人數(shù)分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計(jì)本科上線(xiàn)率為.(2)(i)記“恰有8名學(xué)生達(dá)到本科線(xiàn)”為事件A,由圖可知,甲市每個(gè)考生本科上線(xiàn)的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線(xiàn)人數(shù)分別記為X,Y,依題意,可得,.因?yàn)?020屆高考本科上線(xiàn)人數(shù)乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.本題考查二項(xiàng)分布的綜合應(yīng)用,考查計(jì)算求解能力,注意二項(xiàng)分布與超幾何分布是易混淆的知識(shí)點(diǎn).18.(1)證明見(jiàn)解析;(2).【解析】
(1)取BC的中點(diǎn)O,則,由是等邊三角形,得,從而得到平面,由此能證明(2)以,,所在直線(xiàn)分別為x,y,z軸建立空間直角坐標(biāo)系,利用向量法求得二面角的余弦值,得到結(jié)果.【詳解】(1)取BC的中點(diǎn)O,連接,,由于與是等邊三角形,所以有,,且,所以平面,平面,所以.(2)設(shè),是全等的等邊三角形,所以,又,由余弦定理可得,在中,有,所以以,,所在直線(xiàn)分別為x,y,z軸建立空間直角坐標(biāo)系,如圖所示,則,,,設(shè)平面的一個(gè)法向量為,則,令,則,又平面的一個(gè)法向量為,所以二面角的余弦值為,即二面角的余弦值為.該題考查的是有關(guān)立體幾何的問(wèn)題,涉及到的知識(shí)點(diǎn)有利用線(xiàn)面垂直證明線(xiàn)性垂直,利用向量法求二面角的余弦值,屬于中檔題目.19.(1)(2)證明見(jiàn)解析【解析】
(1)對(duì)函數(shù)求導(dǎo),并設(shè)切點(diǎn),利用點(diǎn)既在曲線(xiàn)上、又在切線(xiàn)上,列出方程組,解得,即可得答案;(2)當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),可得至少有一個(gè)零點(diǎn).再證明零點(diǎn)的唯一性,即對(duì)函數(shù)求導(dǎo)得,對(duì)分和兩種情況討論,即可得答案.【詳解】(1)根據(jù)題意,,設(shè)直線(xiàn)與曲線(xiàn)相切于點(diǎn).根據(jù)題意,可得,解之得,所以.(2)由(1)可知,則當(dāng)x充分小時(shí),當(dāng)x充分大時(shí),∴至少有一個(gè)零點(diǎn).∵,①若,則,在上單調(diào)遞增,∴有唯一零點(diǎn).②若令,得有兩個(gè)極值點(diǎn),∵,∴,∴.∴在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增.∴極大值為.,又,∴在(0,16)上單調(diào)遞增,∴,∴有唯一零點(diǎn).綜上可知,對(duì)于任意,有且僅有一個(gè)零點(diǎn).本題考查導(dǎo)數(shù)的幾何意義的運(yùn)用、利用導(dǎo)數(shù)證明函數(shù)的零點(diǎn)個(gè)數(shù),考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、分類(lèi)討論思想,考查邏輯推理能力和運(yùn)算求解能力,求解時(shí)注意零點(diǎn)存在定理的運(yùn)用.20.(1)(2)答案見(jiàn)解析(3)答案見(jiàn)解析【解析】
(1)設(shè)曲線(xiàn)在點(diǎn),處的切線(xiàn)的斜率為,可求得,,利用直線(xiàn)的點(diǎn)斜式方程即可求得答案;(2)由(Ⅰ)知,,分時(shí),,三類(lèi)討論,即可求得各種情況下的的單調(diào)區(qū)間為;(3)分與兩類(lèi)討論,即可判斷函數(shù)的零點(diǎn)個(gè)數(shù).【詳解】(1),,設(shè)曲線(xiàn)在點(diǎn),處的切線(xiàn)的斜率為,則,又,曲線(xiàn)在點(diǎn),處的切線(xiàn)方程為:,即;(2)由(1)知,,故當(dāng)時(shí),,所以在上單調(diào)遞增;當(dāng)時(shí),,;,,;的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),同理可得的遞增區(qū)間為,遞減區(qū)間為,;綜上所述,時(shí),單調(diào)遞增為,無(wú)遞減區(qū)間;當(dāng)時(shí),的遞減區(qū)間為,遞增區(qū)間為,;當(dāng)時(shí),的遞增區(qū)間為,遞減區(qū)間為,;(3)當(dāng)時(shí),恒成立,所以無(wú)零點(diǎn);當(dāng)時(shí),由,得:,只有一個(gè)零點(diǎn).本題考查利用導(dǎo)數(shù)研究曲線(xiàn)上某點(diǎn)的切線(xiàn)方程,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,考查分類(lèi)討論思想與推理、運(yùn)算能力,屬于中檔題.21.(1)證明見(jiàn)解析(2)證明見(jiàn)解析【解析】
(1)先由基本不等式可得,而,即得證;(2)首先推導(dǎo)出,再利用,展開(kāi)即可得證.【詳解】證明:(1),,,(當(dāng)且僅當(dāng)時(shí)取等號(hào)).(2),,,,,,,.本題考查不等式的證明,考查基本不等式的運(yùn)用,考查邏輯推理能力,屬于中檔題.22.(1)證明見(jiàn)解析;(2)【解析】
(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線(xiàn)為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線(xiàn)為y軸,z軸,建立如圖
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 20173-2025石油天然氣工業(yè)用閥門(mén)
- 京東工程師考試題及答案
- 4-6年級(jí)學(xué)生逆反心理與父母教養(yǎng)方式的關(guān)系的研究
- 2025-2026年六年級(jí)科學(xué)(考點(diǎn)梳理)上學(xué)期期末測(cè)試卷
- 2026年人際關(guān)系顧問(wèn)(人際關(guān)系咨詢(xún))考題及答案
- 2025年高職機(jī)器人運(yùn)維實(shí)訓(xùn)(運(yùn)維實(shí)操訓(xùn)練)試題及答案
- 2025年中職服裝制作(服裝裁剪)試題及答案
- 2025年高職(手工飾品)高端手工飾品設(shè)計(jì)綜合測(cè)試卷
- 2025年大學(xué)二年級(jí)(紡織工程)紡織品設(shè)計(jì)試題及答案
- 2025-2026年高一歷史(古代史)上學(xué)期單元卷
- 2025年10月注冊(cè)審核員《職業(yè)健康安全管理體系基礎(chǔ)》真題及答案
- 高效企業(yè)員工激勵(lì)演講稿范本
- 2026中國(guó)人民銀行直屬事業(yè)單位招聘60人筆試備考題庫(kù)附答案解析(奪冠)
- 產(chǎn)品質(zhì)量檢驗(yàn)標(biāo)準(zhǔn)化操作規(guī)程及模板
- 陰陽(yáng)五行與人體課件
- 新編實(shí)用英語(yǔ)第五版1學(xué)習(xí)通章節(jié)答案期末考試題庫(kù)2023年
- 機(jī)械制圖8套試題及答案解析1
- GB/T 11836-2023混凝土和鋼筋混凝土排水管
- 河湖生態(tài)護(hù)岸工程技術(shù)導(dǎo)則
- GB/T3923.1-1997-織物斷裂強(qiáng)力和斷裂伸長(zhǎng)率的測(cè)定-條樣法
- 小學(xué)生汽車(chē)發(fā)展史新能源課件
評(píng)論
0/150
提交評(píng)論