江蘇省南京市浦口區(qū)江浦高級中學2022年高三下學期一??荚嚁祵W試題含解析_第1頁
江蘇省南京市浦口區(qū)江浦高級中學2022年高三下學期一??荚嚁祵W試題含解析_第2頁
江蘇省南京市浦口區(qū)江浦高級中學2022年高三下學期一模考試數學試題含解析_第3頁
江蘇省南京市浦口區(qū)江浦高級中學2022年高三下學期一??荚嚁祵W試題含解析_第4頁
江蘇省南京市浦口區(qū)江浦高級中學2022年高三下學期一??荚嚁祵W試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2021-2022高考數學模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知等差數列中,若,則此數列中一定為0的是()A. B. C. D.2.如圖所示點是拋物線的焦點,點、分別在拋物線及圓的實線部分上運動,且總是平行于軸,則的周長的取值范圍是()A. B. C. D.3.若點是角的終邊上一點,則()A. B. C. D.4.已知,則,不可能滿足的關系是()A. B. C. D.5.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.46.若復數滿足,其中為虛數單位,是的共軛復數,則復數()A. B. C.4 D.57.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.8.已知直線過雙曲線C:的左焦點F,且與雙曲線C在第二象限交于點A,若(O為坐標原點),則雙曲線C的離心率為A. B. C. D.9.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.10.已知函數,若對任意,都有成立,則實數的取值范圍是()A. B. C. D.11.已知向量,,若,則()A. B. C. D.12.復數(i是虛數單位)在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.已知向量滿足,且,則_________.14.割圓術是估算圓周率的科學方法,由三國時期數學家劉徽創(chuàng)立,他用圓內接正多邊形面積無限逼近圓面積,從而得出圓周率.現在半徑為1的圓內任取一點,則該點取自其內接正十二邊形內部的概率為________.15.若x,y均為正數,且,則的最小值為________.16.拋物線上到其焦點的距離為的點的個數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風雨歷程,某地的民調機構隨機選取了該地的100名市民進行調查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現從年齡在,,內的人員中按分層抽樣的方法抽取8人,再從這8人中隨機選取3人進行座談,用表示年齡在)內的人數,求的分布列和數學期望;(2)若用樣本的頻率代替概率,用隨機抽樣的方法從該地抽取20名市民進行調查,其中有名市民的年齡在的概率為.當最大時,求的值.18.(12分)已知公比為正數的等比數列的前項和為,且,.(1)求數列的通項公式;(2)設,求數列的前項和.19.(12分)已知函數.(1)當時,求函數在處的切線方程;(2)若函數沒有零點,求實數的取值范圍.20.(12分)已知函數,函數().(1)討論的單調性;(2)證明:當時,.(3)證明:當時,.21.(12分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程和曲線的直角坐標方程;(2)設點,直線與曲線交于,兩點,求的值.22.(10分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

將已知條件轉化為的形式,由此確定數列為的項.【詳解】由于等差數列中,所以,化簡得,所以為.故選:A【點睛】本小題主要考查等差數列的基本量計算,屬于基礎題.2.B【解析】

根據拋物線方程求得焦點坐標和準線方程,結合定義表示出;根據拋物線與圓的位置關系和特點,求得點橫坐標的取值范圍,即可由的周長求得其范圍.【詳解】拋物線,則焦點,準線方程為,根據拋物線定義可得,圓,圓心為,半徑為,點、分別在拋物線及圓的實線部分上運動,解得交點橫坐標為2.點、分別在兩個曲線上,總是平行于軸,因而兩點不能重合,不能在軸上,則由圓心和半徑可知,則的周長為,所以,故選:B.【點睛】本題考查了拋物線定義、方程及幾何性質的簡單應用,圓的幾何性質應用,屬于中檔題.3.A【解析】

根據三角函數的定義,求得,再由正弦的倍角公式,即可求解.【詳解】由題意,點是角的終邊上一點,根據三角函數的定義,可得,則,故選A.【點睛】本題主要考查了三角函數的定義和正弦的倍角公式的化簡、求值,其中解答中根據三角函數的定義和正弦的倍角公式,準確化簡、計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4.C【解析】

根據即可得出,,根據,,即可判斷出結果.【詳解】∵;∴,;∴,,故正確;,故C錯誤;∵,故D正確故C.【點睛】本題主要考查指數式和對數式的互化,對數的運算,以及基本不等式:和不等式的應用,屬于中檔題5.C【解析】

設直線AB的方程為,代入得:,由根與系數的關系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設直線AB的方程為,代入得:.由根與系數的關系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關系、焦半徑公式的應用,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.6.D【解析】

根據復數的四則運算法則先求出復數z,再計算它的模長.【詳解】解:復數z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數的計算問題,要求熟練掌握復數的四則運算以及復數長度的計算公式,是基礎題.7.B【解析】

先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.8.B【解析】

直線的傾斜角為,易得.設雙曲線C的右焦點為E,可得中,,則,所以雙曲線C的離心率為.故選B.9.C【解析】

在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.10.D【解析】

先將所求問題轉化為對任意恒成立,即得圖象恒在函數圖象的上方,再利用數形結合即可解決.【詳解】由得,由題意函數得圖象恒在函數圖象的上方,作出函數的圖象如圖所示過原點作函數的切線,設切點為,則,解得,所以切線斜率為,所以,解得.故選:D.【點睛】本題考查導數在不等式恒成立中的應用,考查了學生轉化與化歸思想以及數形結合的思想,是一道中檔題.11.A【解析】

利用平面向量平行的坐標條件得到參數x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.12.B【解析】

利用復數的四則運算以及幾何意義即可求解.【詳解】解:,則復數(i是虛數單位)在復平面內對應的點的坐標為:,位于第二象限.故選:B.【點睛】本題考查了復數的四則運算以及復數的幾何意義,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由數量積的運算律求得,再由數量積的定義可得結論.【詳解】由題意,∴,即,∴.故答案為:.【點睛】本題考查求向量的夾角,掌握數量積的定義與運算律是解題關鍵.14.【解析】

求出圓內接正十二邊形的面積和圓的面積,再用幾何概型公式求出即可.【詳解】半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,∴該正十二邊形的面積為,根據幾何概型公式,該點取自其內接正十二邊形的概率為,故答案為:.【點睛】本小題主要考查面積型幾何概型的計算,屬于基礎題.15.4【解析】

由基本不等式可得,則,即可解得.【詳解】方法一:,當且僅當時取等.方法二:因為,所以,所以,當且僅當時取等.故答案為:.【點睛】本題考查基本不等式在求最小值中的應用,考查學生對基本不等式的靈活使用,難度較易.16.【解析】

設拋物線上任意一點的坐標為,根據拋物線的定義求得,并求出對應的,即可得出結果.【詳解】設拋物線上任意一點的坐標為,拋物線的準線方程為,由拋物線的定義得,解得,此時.因此,拋物線上到其焦點的距離為的點的個數為.故答案為:.【點睛】本題考查利用拋物線的定義求點的坐標,考查計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)分布列見解析,(1)【解析】

(1)根據頻率分布直方圖及抽取總人數,結合各組頻率值即可求得各組抽取的人數;的可能取值為0,1,1,由離散型隨機變量概率求法即可求得各概率值,即可得分布列;由數學期望公式即可求得其數學期望.(1)先求得年齡在內的頻率,視為概率.結合二項分布的性質,表示出,令,化簡后可證明其單調性及取得最大值時的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數為人,年齡在內的人數為人.年齡在內的人數為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設在抽取的10名市民中,年齡在內的人數為,服從二項分布.由頻率分布直方圖可知,年齡在內的頻率為,所以,所以.設,若,則,;若,則,.所以當時,最大,即當最大時,.【點睛】本題考差了離散型隨機變量分布列及數學期望的求法,二項分布的綜合應用,屬于中檔題.18.(1)(2)【解析】

(1)判斷公比不為1,運用等比數列的求和公式,解方程可得公比,進而得到所求通項公式;(2)求得,運用數列的錯位相減法求和,以及等比數列的求和公式,計算可得所求和.【詳解】解:(1)設公比為正數的等比數列的前項和為,且,,可得時,,不成立;當時,,即,解得(舍去),則;(2),前項和,,兩式相減可得,化簡可得.【點睛】本題考查等比數列的通項公式和求和公式的運用,考查數列的錯位相減法求和,考查方程思想和運算能力,屬于中檔題.19.(1).(2)【解析】

(1)利用導數的幾何意義求解即可;(2)利用導數得出的單調性以及極值,從而得出的圖象,將函數的零點問題轉化為函數圖象的交點問題,由圖,即可得出實數的取值范圍.【詳解】(1)當時,,∴切線斜率,又切點∴切線方程為,即.(2),記,令得;∴的情況如下表:2+0單調遞增極大值單調遞減當時,取極大值又時,;時,若沒有零點,即的圖像與直線無公共點,由圖像知的取值范圍是.【點睛】本題主要考查了導數的幾何意義的應用,利用導數研究函數的零點問題,屬于中檔題.20.(1)答案不唯一,具體見解析(2)證明見解析(3)證明見解析【解析】

(1)求出的定義域,導函數,對參數、分類討論得到答案.(2)設函數,求導說明函數的單調性,求出函數的最大值,即可得證.(3)由(1)可知,可得,即又即可得證.【詳解】(1)解:的定義域為,,當,時,,則在上單調遞增;當,時,令,得,令,得,則在上單調遞減,在上單調遞增;當,時,,則在上單調遞減;當,時,令,得,令,得,則在上單調遞增,在上單調遞減;(2)證明:設函數,則.因為,所以,,則,從而在上單調遞減,所以,即.(3)證明:當時,.由(1)知,,所以,即.當時,,,則,即,又,所以,即.【點睛】本題考查利用導數研究含參函數的單調性,利用導數證明不等式,屬于難題.21.(1);(2)【解析】

(1)利用參數方程、普通方程、極坐標方程間的互化公式即可;(2)將直線參數方程代入圓的普通方程,可得,,而根據直線參數方程的幾何意義,知,代入即可解決.【詳解】(1)直線的參數方程為(為參數),消去;得曲線的極坐標方程為.由,,,可得,即曲線的直角坐標方程為;(2)將直線的參數方程(為參數)代入的方程,可得,,設,是點對應的參數值,,,則.【點睛】本題考查參數方程、普通方程、極坐標方程間的互化,直線參數方程的幾何意義,是一道容易題.22.(1)見解析(2)(文)(理)【解析】

(1)證明:取PD中點G,連結GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內,AG在平面PAD內,∴EF∥面PAD;(2)(文)解:取AD中點O,連結PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論