版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
專題03選擇中檔重點題(一)
一、單選題
1.(2023?廣東深圳?統(tǒng)考中考真題)某運輸公司運輸一批貨物,已知大貨車比小貨車每輛多運輸5噸貨物,
且大貨車運輸75噸貨物所用車輛數(shù)與小貨車運輸50噸貨物所用車輛數(shù)相同,設有大貨車每輛運輸無噸,
則所列方程正確的是()
75507550—75507550
A.------=——B.——=-------C.------=——D.——=-------
x-5xxx-5x+5xxx+5
【答案】B
【分析】根據(jù)“大貨車運輸75噸貨物所用車輛數(shù)與小貨車運輸50噸貨物所用車輛數(shù)相同”即可列出方程.
【詳解】解:設有大貨車每輛運輸x噸,則小貨車每輛運輸(%-5)噸,
貝四
xx-5
故選B
【點睛】本題考查分式方程的應用,理解題意準確找到等量關系是解題的關鍵.
2.(2023?廣東深圳?統(tǒng)考中考真題)爬坡時坡角與水平面夾角為a,則每爬1m耗能(1.025-cos(z)J,若某
人爬了1000m,該坡角為30。,則他耗能(參考數(shù)據(jù):V3-1.732,四=1.414)()
【答案】B
【分析】根據(jù)特殊角三角函數(shù)值計算求解.
【詳解】1000(1.025-cosa)=1000(1.025-cos30°)=1025-500石b1025—500xl.732=159
故選:B.
【點睛】本題考查特殊角三角函數(shù)值,掌握特殊角三角函數(shù)值是解題的關鍵.
3.(2022?廣東深圳?統(tǒng)考中考真題)張三經(jīng)營了一家草場,草場里面種植上等草和下等草.他賣五捆上等草
的根數(shù)減去11根,就等于七捆下等草的根數(shù);賣七捆上等草的根數(shù)減去25根,就等于五捆下等草的根數(shù).設
上等草一捆為x根,下等草一捆為》根,則下列方程正確的是()
5y-ll=7xJ5x+ll=7yJ5x-ll=7y1x-\\=5y
7y-25=5尤H25=5yC'17x-25=5y
x+5x-25=7y
【答案】C
【分析】設上等草一捆為x根,下等草一捆為y根,根據(jù)“賣五捆上等草的根數(shù)減去11根,就等于七捆下等
草的根數(shù);賣七捆上等草的根數(shù)減去25根,就等于五捆下等草的根數(shù).”列出方程組,即可求解.
【詳解】解:設上等草一捆為X根,下等草一捆為y根,根據(jù)題意得:
J5x-ll=7y
17尤-25=5/
故選:C
【點睛】本題主要考查了二元一次方程組的應用,明確題意,準確得到等量關系是解題的關鍵.
4.(2021?廣東深圳?統(tǒng)考中考真題)如圖,在點尸處,看建筑物頂端。的仰角為32。,向前走了15米到達
點E即EF=15米,在點E處看點。的仰角為64。,則CD的長用三角函數(shù)表示為()
A.15sin32°B.15tan64°C.15sin64°D.15tan32°
【答案】C
【分析】首先根據(jù)題目條件,利用外角的性質(zhì),得出是等腰三角形,在放AOEC中,利用NDEC的
正弦即可表示出8的長度.
【詳解】?.,/ABZ。,NDEC=64。,
:./DEF=?DEC?F32?,
DE=EF=15,
由題可知,AOCE為直角三角形,
CD
在RtXDEC中,sin?DEC-----
DE
CD
即:sin64?—,
15
???CD=15咨in64?,
故選:C
【點睛】本題考查三角形的外角,等腰三角形的性質(zhì),解直角三角形的運算,解題關鍵是利用三角形的外
角得出等腰三角形.
5.(2021?廣東深圳?統(tǒng)考中考真題)二次函數(shù)>=加+法+1的圖象與一次函數(shù)>=2依+6在同一平面直角坐
【分析】先分析二次函數(shù)>=依2+a+1的圖像的開口方向即對稱軸位置,而一次函數(shù)y=2以+b的圖像恒
過定點(-=b,。),即可得出正確選項.
2a
b_A
【詳解】二次函數(shù)>="+i的對稱軸為尤=—一次函數(shù)y=2依+6的圖像恒過定點(—丁,0),所以
2a2a
b
一次函數(shù)的圖像與二次函數(shù)的對稱軸的交點為(-二,0),只有A選項符合題意.
2a
故選A.
【點睛】本題考查了二次函數(shù)的圖像與性質(zhì)、一次函數(shù)的圖像與性質(zhì),解決本題的關鍵是能推出一次函數(shù)
b
y=2辦+6的圖像恒過定點,0),本題蘊含了數(shù)形結(jié)合的思想方法等.
2a
6.(2023?廣東深圳?校考模擬預測)下列命題是真命題的是()
A.相等的兩個角是對頂角B.相等的圓周角所對的弧相等
C.若a<b,貝心D.對角線互相平分的四邊形是平行四邊形
【答案】D
【分析】根據(jù)對頂角的性質(zhì),圓的性質(zhì),不等式的性質(zhì),平行四邊形的判定判斷即可.
【詳解】A、相等的兩個角不一定是對頂角,故該項錯誤,不符合題意;
B、在同圓或等圓中,相等的圓周角所對的弧相等,故該項錯誤,不符合題意;
C、當c=0時,ac2=bc2,故該項錯誤,不符合題意;
D、對角線互相平分的四邊形是平行四邊形,故該項正確,符合題意;
故選D.
【點睛】本題考查了對頂角的性質(zhì),圓的性質(zhì),不等式的性質(zhì),平行四邊形的判定,熟練掌握相關的知識
點是解題的關鍵.
7.(2023?廣東深圳???寄M預測)如圖,在銳角三角形ABC中,AB>AC>BC,按如下步驟作圖.
第一步:作/胡C的平分線AD;交3c于點。;
第二步:作A。的垂直平分線跖,交AC于點E,交AB于點尸;
第三步:連接DE.
則下列結(jié)論正確的是()
A.DE1ACB.DE//ABC.CD=DED.CD=BD
【答案】B
【分析】如圖,由角平分線和垂直平分線的性質(zhì)可得N1=N2、N2=/3,進而得到N1=N3,最后運用平行
線的判定定理即可說明B選項正確.
【詳解】解:如圖:
是/BAC的角平分,E尸是AD的中垂線.
;.N1=N2,AE=DE,
:.N2=N3
:.Z1=Z3
DEHAB.
故選8.
【點睛】本題主要考查了角平分線的定義、垂直平分線的性質(zhì)以及平行線的判定,靈活運用相關知識成為
解答本題的關鍵.
8.(2023?廣東深圳?統(tǒng)考二模)大約在兩千四五百年前,墨子和他的學生做了世界上第1個小孔成倒像的實
驗.并在《墨經(jīng)》中有這樣的精彩記錄:“景到,在午有端,與景長,說在端”.如圖所示的小孔成像實驗中,
若物距為10cm,像距為15cm,蠟燭火焰倒立的像的高度是8cm,則蠟燭火焰的高度是()
916
A.-B.6C.—D.8
23
【答案】C
【分析】根據(jù)小孔成像的性質(zhì)及相似三角形的性質(zhì)求解即可.
【詳解】解:根據(jù)小孔成像的性質(zhì)及相似三角形的性質(zhì)可得:蠟燭火焰的高度與火焰的像的高度的比值等
于物距與像距的比值,設蠟燭火焰的高度為xcm,貝IJ:
x_10
8-15,
解得:X=y,
即蠟燭火焰的高度為gem,
故選:C.
【點睛】本題考查了相似三角形性質(zhì)的應用,解題的關鍵在于理解小孔成像的原理得到相似三角形.
9.(2023?廣東深圳?統(tǒng)考二模)如圖,等邊ABC內(nèi)有一點E,BE=4,CE=6,當/AEB=150。時,貝UAE
的長為()
A.2B.2#>C.3D.3亞
【答案】B
【分析】以點B為旋轉(zhuǎn)中心把-84E順時針旋轉(zhuǎn)60。至可證/XBEF是等邊三角形,ZCFE=90°,
利用勾股定理求出CF的長即可求解.
【詳解】以點3為旋轉(zhuǎn)中心把一B4E順時針旋轉(zhuǎn)60°至4BCF,
則BF=BE,CF=AE,ZBFC=ZAEB=150°.
**?△B£F是等邊三角形,
EF=BE=4,ZBFE=60°,
:.ZCFE=150?!?0°=90°,
CF=-jCEr-EF2=275,
/.AE=2y[5.
故選B.
【點睛】本題考查了等邊三角形的性質(zhì),旋轉(zhuǎn)的性質(zhì),等邊三角形的判定與性質(zhì),勾股定理等知識,正確
作出輔助線是解答本題的關鍵.
10.(2023?廣東深圳?深圳市高級中學校聯(lián)考模擬預測)程大位的《算法統(tǒng)宗》是我國古代數(shù)學名著,其中
有一道這樣的題目“我問開店李三公,眾客都來到店中,一房七客多七客,一房九客一房空.問房客各幾何?”
題目大意是:一些客人到李三公的店中住宿,若每間房里住7人,就會有7人沒地方??;若每間房住9人,
則空出一間房.問有多少房間,多少客人?如果設房間有x間,客人》人,由題意可列方程組()
Jy=7%-7jy=7x+7Jx=1y-lJy=7^-9
A,jy=9(x+l)B,[y=9(x-l),=D-|y=9x-7
【答案】B
【分析】根據(jù):每間房里住7人,就會有7人沒地方住;若每間房住9人,則空出一間房,即可求解.
【詳解】解:設房間有x間,客人)人,
y=7%+7
由題意可列方程組為:
y=9(x-l)'
故選:B.
【點睛】本題考查了二元一次方程組的應用,正確理解題意、找準相等關系是解題的關鍵.
11.(2023?廣東深圳.深圳市高級中學校聯(lián)考模擬預測)如圖,O為ABC的外接圓,BD與。相切于點
B,連接CO并延長,交BD于點D.若ND=40。,則/BAC的度數(shù)為()
A.50°B.55°C.60°D.65°
【答案】D
【分析】連接OB,根據(jù)切線的性質(zhì)可得/。比)=90。,從而得到/30£>=50。,進而得到ZBOC=130。,再
由圓周角定理,即可求解.
【詳解】解:如圖,連接。8,
;BD與。相切于點
OBLBD,即NO8D=90。,
ZD=40°,
ZBOD=50°,
:.ZBOC=130°,
':ZBOC=2ZBAC,
:.ABAC=65°.
故選:D
【點睛】本題主要考查了切線的性質(zhì),圓周角定理,熟練掌握切線的性質(zhì),圓周角定理是解題的關鍵.
12.(2023?廣東深圳?校考模擬預測)如圖,太陽光線與地面成80。角,窗子AB=2米,要在窗子外面上方。.2
米的點。處安裝水平遮陽板DC,使光線不能直接射入室內(nèi),則遮陽板DC的長度至少是()
D
22.2
A.---------米B.2sin80。米C.——米D.2.2sin800米
tan80°tan80°
【答案】C
【分析】根據(jù)題意可得30=2.2米,/。。=80。,根據(jù)1皿80。=巖,即可求解.
【詳解】解::AB=2米,40=0.2米,
3D=2.2米,
ZDCB=80°,
/.tan80°=—,
CD
2.2
(米),
tan80°tan80°
故選:C.
【點睛】本題主要考查了解直角三角形的實際應用,解題的關鍵是根據(jù)題意找出已知邊和已知角.
13.(2023?廣東深圳???寄M預測)二次函數(shù)y=依2+bx+c(a豐0)的部分圖象如圖所示,圖象過點(-1,0),
對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>-3b;(3)b2-4ac=Q;(4)若點A(-3,yJ、
點點。(7,%)在該函數(shù)圖象上,則》<為<〉3.其中正確的結(jié)論有()
A.1個B.2個C.3個D.4個
【答案】B
【分析】二次函數(shù)>="2+bx+c(a^O)的部分圖像過點(一1,0),由此可知a—b+c=O,對稱軸為直線x=2,
b
根據(jù)頂點坐標公式則有-丁=2,即匕=7。,由此即可用含有。的式子表示。,c,因為圖像開口下,所以
a<0,由此即可求解.
【詳解】解::二次函數(shù)y=加+灰+。("0)的部分圖像過點(T,o),
??a—Z7+c=O,
;對稱軸為直線x=2,
b
-----=2,即h=-4a,
2a
??c——5a,
???4〃+人=0,故結(jié)論①正確;
結(jié)論②,由對稱性可知,當x=l和x=3時函數(shù)值相同,即y>0
?,?當%=3時,9a+3b+c>0,
即9a+c>-3b
故結(jié)論②正確;
??,拋物線與x軸有兩個不同的交點,
2
**?b-4QC>0
故結(jié)論③錯誤;
???由對稱可得C(7,%)對稱點為(-3,%),
根據(jù)在對稱軸左側(cè),y隨x的增大而增大,
六結(jié)論④錯誤.
綜上所述,正確的有①②.
故選B.
【點睛】本題主要考查二次函數(shù)圖像的性質(zhì),掌握二次函數(shù)圖像的對稱性,根據(jù)題意用二次項系數(shù)表示一
次項系數(shù)和常數(shù)項是解題的關鍵.
14.(2022年浙江省寧波市海曙區(qū)初中畢業(yè)生學業(yè)水平模擬考試(一模)數(shù)學試題)《張丘建算經(jīng)》中有這
樣一首古詩:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,多乙一倍正當;乙說得甲九只,兩人羊數(shù)一
樣;問甲乙各幾羊,讓你算個半晌,如果設甲有羊x只,乙有羊y只,那么可列方程組()
.Jx+9=2(y-9)Jx+9=2(y-9)
A.jD.y
(y+9=x[y+9=x-9
x+9=2yx+9=2y
D.
y+9=x-9y+9=x
【答案】B
【分析】根據(jù)甲得乙羊九只,多乙一倍正當;乙說得甲九只,兩人羊數(shù)一樣,可以列出相應的方程組,本
題得以解決.
【詳解】解:由題意可得
x+9=2(y-9)
y+9=x-9
故選:B.
【點睛】本題考查由實際問題抽象出二元一次方程組,解答本題的關鍵是明確題意,找出等量關系,列出
相應的方程組.
15.(2023?廣東深圳?深圳市高級中學校聯(lián)考二模)如圖,函數(shù)y=ar2+Zzx+c與y=的圖象如圖所示,以
B.a+b+c>0
C.2。+6=1D.當0<x<2時,ax2+(Z?-l)x+c+1>0
【答案】C
b
【分析】由圖象可得,a>0,c=-l,拋物線與直線的交點坐標為(0,-1),(2,1),貝蜂<0,
2a
進而可判斷A的正誤;根據(jù)二次函數(shù)當x=l時,”0,可判斷B的正誤;將(2,1)代入y=^+bx+c,可
判斷C的正誤;根據(jù)當0<%<2時,x-l>ax2+bx+c,判斷D的正誤即可.
【詳解】解:由圖象可得,a>0,c=-l,拋物線與直線的交點坐標為(2,1),
2a
:.b<0,
bc>0fA錯誤,故不符合要求;
當%=1時,yv。,即a+b+cvO,B錯誤,故不符合要求;
將(2,1)代入y得,4a+2/?-1=1,即2a+/?=l,C正確,故符合要求;
當0<元<2時,x—l>ax2+bx+cyBP+(&—l)x+c+l<0,D錯誤,故不符合要求;
故選:C.
【點睛】本題考查了二次函數(shù)的圖象性質(zhì),二次函數(shù)與不等式,二次函數(shù)與一次函數(shù)綜合等知識.解題的
關鍵在于對知識的熟練掌握與靈活運用.
16.(2023?廣東深圳?二模)如圖所示,小剛手拿20元錢正在和售貨員對話,請你仔細看圖,1聽果奶、1
聽可樂的單價分別是()
A.3元,3.5元B.3.5元,3元
C.4元,4.5元D.4.5元,4元
【答案】A
【分析】設1聽果奶為x元,1聽可樂y元,由題意可得等量關系:①1聽果奶的費用+4聽可樂的費用=17
元,②1聽可樂的費用-1聽果奶的費用=0.5元,根據(jù)等量關系列出方程組,再解即可.
【詳解】設1聽果奶為%元,1聽可樂y元,由題意得:
x+4y=20-3
y-x=0.5
x=3
解得:
y=3.5'
故選A.
【點睛】此題主要考查了二元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系,設出未
知數(shù),列出方程組.
17.(2023?廣東深圳?統(tǒng)考模擬預測)如圖,將四邊形ABCD先向左平移3個單位,再向上平移2個單位,
那么點A的對應點Ai的坐標是()
【答案】B
【詳解】???四邊形ABCD先向左平移3個單位,再向上平移2個單位,
...點A也先向左平移3個單位,再向上平移2個單位,
...由A(3,-1)可知,A,坐標為(0,1).故選B.
k
18.(2023?廣東深圳?統(tǒng)考模擬預測)如圖,在平面直角坐標系尤Oy中,一次函數(shù)的圖象與反比例函數(shù)y=勺
x
(k<0)的圖象在第二象限交于A(-3,m),B(n,2)兩點.若點E在x軸上,滿足/AEB=90。,且AE
333
【答案】B
【分析】過A作AM_Lx軸,過2作&V_Lx軸,過A作4P_L3N,證明A4EG=尸G,再根據(jù)條件證明
74
AAME4ENB,得到ME=§BN="在根據(jù)勾股定理計算即可;
【詳解】過A作AM_Lx軸,過8作3N_Lx軸,過A作AF_L3N,
.,?四邊形不為矩形,
:.FN=AM,AF=MN,
VA(-3,m),BGi,2),
BF=2—m,
\*AE=2-m,
JBF=AE,
在^AEG和^BFG中,
ZAGE=ZBGF
<ZAEG=ZDFG=90°,
AE=BF
:.AAEG=ABFG,
:.AG=BG,EG=FG,
:.BE=BG+EG=AG+FG=AF,
,:A、B在〉=與上,
x
k=—3m=2n,
.2
..m=--n,
3
2
BF=BN—FN=BN—AM=2—m=2d—n,MN=n+3,
BE=AF=n+3,
*.*ZAEM+ZMAE=90°,?AEM?BEN90?,
ZMAE=NNEB,
9:ZAME=NENB=90。,
/.AAMEAENB,
MEAE2-m2+|/7
2,
BNEBn+3m+33
24
ME=-BN=
33
在R//AME中,AM=m,AE=2-m,
AM2+ME2=AE2f
4
.?.m2+I=(2-m)2,
?.?〃/=一5,
9
;.k=-3m=--
3
故答案選B.
【點睛】本題主要考查了反比例函數(shù)的圖象性質(zhì)、相似三角形的判定與性質(zhì)、勾股定理,準確計算是解題
的關鍵.
19.(2023?廣東深圳?校聯(lián)考模擬預測)有這樣一首打油詩:甲乙隔溪牧羊,二人互相商量;甲得乙羊九只,
多乙一倍正當;乙說得甲九只,兩人羊數(shù)一樣;問甲乙各幾羊,讓你算個舉晌.如果設甲有羊1只,乙有
羊y只,則可列方程組()
x+9=2(y-9)x+9=2(y-9)
A.B.
x=y+9x-9=y+9
x+9=2x+9=2y
C.D.
x-9=y+9x=y+9
【答案】B
【分析】根據(jù)甲得乙羊九只,多乙一倍正當,乙說得甲九只,兩人羊數(shù)一樣,可以列出相應的方程組,即
可得出結(jié)論.
x+9=2(y-9)
【詳解】解:由題意可得:
x-9=y+9
故選:B.
【點睛】本題主要考查了由實際問題抽象出二元一次方程組,明確題意,找出等量關系是解此題的關鍵.
20.(2023?廣東深圳?統(tǒng)考模擬預測)如圖,九年級(1)班課外活動小組利用平面鏡測量學校旗桿的高度,
在觀測員與旗桿AB之間的地面上平放一面鏡子,在鏡子上做一個標記E,當觀測到旗桿頂端在鏡子中的像
與鏡子上的標記重合時,測得觀測員的眼睛到地面的高度。為1.6m,觀測員到標記E的距離CE為2m,
旗桿底部到標記E的距離AE為16m,則旗桿AB的高度約是()
B
,'口
ZZ
?
?
I/
D;/
j_____L
CEA
A.22.5mB.20mC.14.4mD.12.8m
【答案】D
【分析】先根據(jù)相似三角形的判定證出,班EDCE,再根據(jù)相似三角形的性質(zhì)求解即可得.
【詳解】解:???鏡子垂直于地面,
???入射角等于反射角,
JZDEC=ZBEA,
?:DC±AC,BA±AC,
:.ZDCE=ZBAE=90°,
:.BAEDCE,
.ABAEAB16
??=,即nn~=,
CDCE1.62
解得AB=12.8(m),
故選:D.
【點睛】本題考查了相似三角形的應用,正確找出兩個相似三角形是解題關鍵.
21.(2023?廣東深圳?統(tǒng)考模擬預測)如圖,某校勞動實踐課程試驗園地是長為20m,寬為18m的矩形,為
方便活動,需要在園地中間開辟一橫兩縱共三條等寬的小道.如果園地余下的面積為306m2,則小道的寬為
多少?設小道的寬為根據(jù)題意,可列方程為()
A.(20-2x)(18-x)=306
B.(20-x)(18-2x)=306
C.20xl8-2xl8%-20x+x2=306
D.20xl8-2x20x-18x+x2=306
【答案】A
【分析】由小道的寬為x米,可得出種植部分可合成長為(20-2x)米,寬為(18-x)米的矩形,根據(jù)種植面
積為306平方米,即可得出關于x的一元二次方程,此題得解.
【詳解】解:,?小道的寬為x米,
種植部分可合成長為(20-2力米,寬為。8-力米的矩形.
依題意得:(20-2x)(18-x)=306.
故選:A.
【點睛】本題考查了由實際問題抽象出一元二次方程,找準等量關系,正確列出一元二次方程是解題的關
鍵.
22.(2023廣東深圳?校聯(lián)考模擬預測)如圖,A3是。的直徑,將弦AC繞點A順時針旋轉(zhuǎn)30。得到AD,
此時點C的對應點。落在A3上,延長CO,交于點E,若CE=4,則圖中陰影部分的面積為()
A.2萬B.272C.2%-4D.2兀-2亞
【答案】C
【分析】如圖,連接。E,OC,過點。作。凡LCE于點居由旋轉(zhuǎn)得AO=AC,可求出NADC=NACD=75°,
由圓周角定理得NAOE=150。,得ZEOD=30°,由三角形外角的性質(zhì)得/?!暧?45。,/尸。。=90。,由垂徑
定理得@7=2,根據(jù)勾股定理得0E=2近,根據(jù)S陰影二S扇形E0F-S業(yè)OF求解即可.
【詳解】解:如圖,連接0E0C,過點。作。fUCE于點E
貝ljEF」CE」x4=2,
22
由旋轉(zhuǎn)得,AC=AD,
:.ZADC=ZACD,
VZA=30°,
ZADC=ZACD=|x(180°-30°)=75°,
/.ZAOE=2ZACD=150"
:.ZEOD=3Q°,
又ZOED+NEOD=ZODC=75°,
ZOED=75°-NEOD=75°-30°=45°,
ZEOF=ZOEF=45°,
OF=EF=2
OE=>]OF2+EF2=,2?+2?=272,
*.?OE=OC
:.ZOEC=ZOFE=45°
/.ZEOC=90"
90/(20)21
S陰影一S扇形EOF—S郎OF--------------x4x2=2/r—4.
-3602
故選:C.
【點睛】本題主要考查了等腰三角形的判定與性質(zhì),圓周角定理,勾股定理,扇形面積等知識,求出扇形
的半徑和圓心角是解答本題的關鍵.
23.(2023?廣東深圳?統(tǒng)考二模)在如圖所示的圖形中隨機撒一把豆子,統(tǒng)計落在A,B,C三個區(qū)域中的豆
A.落在A區(qū)域的概率最小B.落在8區(qū)域的概率最小
C.落在C區(qū)域的概率最大D.落在三個區(qū)域的概率一樣
【答案】A
【分析】根據(jù)哪個區(qū)域的面積大落在那個區(qū)域的概率就大解答即可.
【詳解】解:C區(qū)域的面積:^x42=16TT;
8區(qū)域的面積:乃x[(4+2)2-42]=20萬;
A區(qū)域的面積:〃X[(4+2+1)2_(4+2)2]=13%;
..SB>Sc>SA,
,落在A區(qū)域的概率最小,落在8區(qū)域的概率最大.
故選:A.
【點睛】本題考查了幾何概率,解題的關鍵是了解那個區(qū)域的面積大落在那個區(qū)域的概率就大.
24.(2023?廣東深圳?統(tǒng)考二模)“375晚會”曝光了專騙老人買神藥的“直播間兒子”一一將成本價1.2元/盒的
產(chǎn)品賣到10盒/99元.該產(chǎn)品的利潤率約為()
A.825%B.12.1%C.725%D.87.9%
【答案】C
【分析】根據(jù)利潤率等于利潤除以成本即可求解.
99
【詳解】解:???每盒的利潤=5一12=8.7(元),
o7
???該產(chǎn)品的利潤率約為:1萬xl00%=725%
故選:C.
【點睛】本題考查了有理數(shù)混合運算的應用,掌握利潤率等于利潤除以成本是解題的關鍵.
25.(2023?廣東深圳?深圳中學校聯(lián)考二模)下列命題是真命題的是()
A.每個內(nèi)角都相等的多邊形是正多邊形B.對角線相等的平行四邊形是矩形
C.兩直線平行,同位角互補D.過線段中點的直線是線段的垂直平分線
【答案】B
【分析】根據(jù)正多邊形的定義、矩形的判定方法、平行線的性質(zhì)、垂直平分線定義分析判斷即可.
【詳解】解:A、每個內(nèi)角都相等,每條邊都相等的多邊形是正多邊形,故原命題錯誤,是假命題,不符合
題意;
B、對角線相等的平行四邊形是矩形,正確,是真命題,符合題意;
C、兩直線平行,同位角相等,故原命題錯誤,是假命題,不符合題意;
D、過線段中點的垂直于線段的直線是線段的垂直平分線,故原命題錯誤,是假命題,不符合題意;
故選:B.
【點睛】本題考查命題與定理的知識,解題的關鍵是熟練掌握正多邊形的定義、矩形的判定方法、平行線
的性質(zhì)、垂直平分線定義.
26.(2023?廣東深圳?深圳中學校聯(lián)考二模)函數(shù)y=w0)與y=ox?一1(。20)在同一平面直角坐標系中
的圖象可能是()
【答案】D
【分析】先根據(jù)丫=加-1(。*0)得知二次函數(shù)與>軸的交點為(0,-1),從而可以排除B、C選項,再根據(jù)。
的取值即可得出答案
【詳解】解:二次函數(shù)的解析式為丁=依2T(。力。),
,二次函數(shù)y=<2^2—l(awO)與y軸的交點為
故B、C選項錯誤,不符合題意;
當。>0時,反比例函數(shù)y=:(awO)的圖象經(jīng)過一、三象限,二次函數(shù)丁=依2-15片0)開口向上,故A選
項錯誤,不符合題意;
當。<0時,反比例函數(shù)》的圖象經(jīng)過二、四象限,二次函數(shù)丫=依2—開口向下,故D選
項正確,符合題意;
故選:D.
【點睛】本題主要考查了反比例函數(shù)與二次函數(shù)圖象的綜合判斷,熟練掌握圖象與系數(shù)的關系,采用數(shù)形
結(jié)合的思想解題,是解題的關鍵.
27.(2023?廣東深圳?校聯(lián)考二模)下列命題正確的是()
A.若a>b,貝!|a—l<b—1
k
B.若(2,3)是反比例函數(shù)y圖像上的點,則(-1,6)也是該函數(shù)圖像上的點
C.矩形對角線相互平分且相等
D.三角形的一條中位線等分該三角形的面積
【答案】C
【分析】根據(jù)不等式的性質(zhì)、反比例函數(shù)的性質(zhì)、矩形的性質(zhì)、三角形中線的性質(zhì)逐項排查即可解答.
【詳解】解:A.若a>b,貝-1,故A選項錯誤,不符合題意;
B.若(2,3)是反比例函數(shù)y圖像上的點,則函數(shù)解析式為y=g,易得(-1,6)不在該函數(shù)圖像上,故B
選項錯誤,不符合題意;
C.矩形對角線相互平分且相等,故C選項說法正確,符合題意;
D.三角形的一條中線等分該三角形的面積,故D選項說法錯誤,不符合題意.
故選:C.
【點睛】本題主要考查了不等式的性質(zhì)、反比例函數(shù)的性質(zhì)、矩形的性質(zhì)、三角形中線的性質(zhì)等知識點,
掌握矩形的性質(zhì)是解答本題的關鍵.
28.(2023?廣東深圳?校聯(lián)考二模)《算法統(tǒng)宗》是我國明代數(shù)學家程大位的主要著作在這部著作中,許多數(shù)
學問題都是以歌訣形式呈現(xiàn)的“甜果苦果”就是其中一首.“九百九十九文錢,甜果苦果買一千,四文錢買苦
果七,十一文錢九個甜,甜苦兩果各幾個請君布算莫遲疑!”大意是說:用999文錢共買了1000個甜果和
苦果,其中4文錢可以買苦果7個,11文錢可以買甜果9個,請問甜、苦果各買幾個?若設苦果買1個,
買甜果y個,可以列方程為().
x+y=999x+y=1000
A.《<411B.《:79
-x+—y=1000_x+_y=999
179,14ir
x+y=1000x+y=999
C.《411D.《,79
—x+—>=999—XH——y=1000
79,〔411
【答案】C
【分析】利用總價=單價X數(shù)量,結(jié)合用九百九十九文錢共買了一千個苦果和甜果,即可羽y的二元一次
方程組.
【詳解】解:設苦果買X個,買甜果y個,
???共買了1000個甜果和苦果,
x+y=1000,
又文錢可以買苦果7個,11文錢可以買甜果9個,
411
???苦果和甜果的單價分別為1文和/文,
:一共花費了999文,
411
???一%+—>=999,
79
x+y=1000
方程組為411
-x+—y=999
179,
故選:C.
【點睛】本題考查由實際問題抽象出二元一次方程組.找準等量關系,正確列出二元一次方程組是解題的
關鍵.
29.(2023?廣東深圳?統(tǒng)考三模)下列說法正確的是()
A.兩點之間,直線最短
B.線段垂直平分線上的點到這條線段兩個端點的距離相等
C.一組對邊平行,另一組對邊相等的四邊形是平行四邊形
D.圓周角的度數(shù)等于圓心角度數(shù)的一半
【答案】B
【分析】根據(jù)兩點之間線段最短,垂直平分線的性質(zhì),平行四邊形的判定定理,圓周角定理逐項分析判定
即可求解.
【詳解】解:A.兩點之間,線段最短,
B.線段垂直平分線上的點到這條線段兩個端點的距離相等
C.一組對邊平行,另一組對邊相等的四邊形不一定是平行四邊形
D.同弧或等弧所對圓周角的度數(shù)等于圓心角度數(shù)的一半
故選:B.
【點睛】本題考查了兩點之間線段最短,垂直平分線的性質(zhì),平行四邊形的判定定理,圓周角定理,熟練
掌握以上性質(zhì)定理是解題的關鍵.
30.(2023?廣東深圳?統(tǒng)考二模)南山文體中心打算購買李寧、安踏兩種不同品牌的籃球,已知李寧籃球的
單價是安踏籃球的單價的1.2倍,且用1200元購買的李寧籃球的數(shù)量比用1200元購買安踏籃球的數(shù)量少2個,
設安踏籃球的單價為x元,則下列方程正確的是()
12001c12001200?-1200
A.=1.2x------B.
Xx—2x—2X
「
12001200—c012001200—9
X1.2x1.2xX
【答案】C
【分析】設安踏籃球的單價為x元,則李寧籃球的單價是1.2x,根據(jù)用1200元購買的李寧籃球的數(shù)量比用
1200元購買安踏籃球的數(shù)量少2個,列出分式方程,即可求解.
【詳解】解:設安踏籃球的單價為x元,則李寧籃球的單價是1.2x,根據(jù)題意得,
12001200c
----------丁=2,
x1,2x
故選:C.
【點睛】本題考查了列分式方程,根據(jù)題意找到等量關系,列出方程是解題的關鍵.
31.(2023?廣東深圳?深圳市南山外國語學校校聯(lián)考二模)在一個可以改變體積的密閉容器內(nèi)裝有一定質(zhì)量
的氣體,當改變?nèi)萜鞯捏w積時,氣體的密度也會隨之改變,密度"(kg/n?)是體積丫6)的反比例函數(shù),它
的圖象如圖所示,根據(jù)圖象可知,下列說法正確的是()
A.密度Mkg/m)隨體積^(n?)的增大而增大
B.密度0(kg/m3)和體積丫e)的關系式為夕=[
C.密度0N2kg/m3時,體積V的范圍為0<VW4m3
D.體積V22kg/m3時,密度夕的范圍為O<0<4kg/m3
【答案】C
【分析】求得反比例函數(shù)的關系式,根據(jù)反比例函數(shù)的性質(zhì)解答即可.
【詳解】解:觀察圖象,密度Mkg/n?)是體積丫3)的反比例函數(shù),且經(jīng)過點(4,2),
k
設反比例函數(shù)的關系式為貝U左=4x2=8,
Q
函數(shù)關系式為
A、密度Q(kg/n?)隨體積丫(曲)的增大而減少,原說法錯誤,本選項不符合題意;
B、密度夕(kg/n?)和體積V(m3)的關系式為原說法錯誤,本選項不符合題意;
C、密度0N2kg/m3時,體積V的范圍為0<VW4m3,正確,,本選項符合題意;
D、體積VZ2kg/m3時,密度夕的范圍為0<pW4kg/m3,原說法錯誤,本選項不符合題意;
故選:C.
【點睛】本題考查了反比例函數(shù)的應用,利用待定系數(shù)法求得比例函數(shù)的關系式是解題的關鍵.
32.(2023?廣東深圳?深圳市南山外國語學校校聯(lián)考二模)如圖,在ABC中,AB=AC,分別以點A、B為
圓心,以適當?shù)拈L為半徑作弧,兩弧分別交于E,F,作直線EE。為8c的中點,M為直線上任意一
點.若8C=4,他C面積為10,則長度的最小值為()
A.-B.3C.4D.5
2
【答案】D
【分析】由基本作圖得到得所垂直平分A8,則所以連接MA、DA,如圖,
利用兩點之間線段最短可判斷MA+M。的最小值為A。,再利用等腰三角形的性質(zhì)得到ADL2C,然后利用
三角形面積公式計算出AD即可.
【詳解】解:由作法得EF垂直平分AB,
:.MB=MA,
:.BM+MD=MA+MD,
連接AM、DA,如圖,
c
,:MA+MD>AD(當且僅當M點在A。上時取等號),
:.MA+MD的最小值為AD,
':AB=AC,。點為8C的中點,
:.AD1BC,
,/S^-BC-AD^10,7
ADC2
/.BM+MD長度的最小值為5.
故選:D.
【點睛】本題考查的是線段的垂直平分線的性質(zhì),利用軸對稱求線段和的最小值,三角形的面積,兩點之
間,線段最短,掌握以上知識是解題的關鍵.
33.(2023?廣東深圳?深圳市高級中學校聯(lián)考二模)二次函數(shù)%/+版與一次函數(shù)y=ox+6的圖像在同一
直角坐標系中圖像可能是()
【分析】根據(jù)二次函數(shù)和一次函數(shù)的系數(shù)對函數(shù)圖像的影響,可首先排除A選項,再根據(jù)62+法=6+6,
h
再=1,x=--,可見一個交點在x軸上,一個交點的橫坐標為1,且拋物線過原點,即可選出正確選項.
2a
【詳解】解::二次函數(shù)y=
c=0
???二次函數(shù)圖像過原點,
A選項不符合題意;
B:假設二次函數(shù)的圖像正確,由二次函數(shù)圖像開口方向向上,可知心0;
又;在同一坐標系中由一次函數(shù)y=Q%+b的圖像,y隨X的增大而減小,可知"V0;
故B選項不符合題意;
,**ax2+bx=ax+b
?比—1x-b
a
b
.?.交點坐標為:(1,。+6),(―,0),
a
...其中一個交點坐標位于x軸上,
故C選項,函數(shù)圖像一個交點坐標位于x軸上,而且拋物線過原點,符合題意;
故D選項,函數(shù)圖像交點不在x軸上,不符合題意;
故答案為C.
【點睛】本題主要考查二次函數(shù)的圖像與性質(zhì),熟練掌握二次函數(shù)的二次項系數(shù)、一次項系數(shù)及常數(shù)項對
函數(shù)圖像的影響是解題的關鍵.
34.(2023?廣東深圳?深圳市高級中學校聯(lián)考二模)如圖,點E是正方形ABCD內(nèi)部一個動點,且AD==8,
BF=2,則DE+CF的最小值為()
A.10B.3而C.7直D.歷
【答案】A
【分析】取BG=3尸=2,則CG=8—2=6,證明/BGE斗3尸C得出ZBEG=ZBCF,進而證明NFCE=ZGEC,
即可證明,尸CE絲..GEC,得出EG=C尸,則當瓦G,£>三點共線時,OE+CF取得最小值,最小值為。G的
長,勾股定理即可求解.
【詳解】解:如圖所示,取BG=BF=2,則CG=8—2=6,連接EG,
VAD=EB=8,BF=2,
點E在以8為圓心8為半徑的圓上運動,點尸在以3為圓心2為半徑的圓上運動,
在‘BGE,.BbC中,
BF=BG
<ZEBG=ZCBF,
BE=BC
:.tBGE^BFC,
:.ZBEG=NBCF,ZBGE=ZBFC
:.NFGC=NCFE,
":BE=BC=8,
:.ZBEC=ZBCE,
即々EC=NGCE,
/FCE=ZGEC,
又
CG=EF=6,ZFGC=ZCFEf
???,F(xiàn)CE空、GEC,
:.EG=FC,
當EG=b。時,則當及G,。三點共線時,OE+CF取得最小值,最小值為OG的長,
在RtZXCDG中,DG=4DC2+CG1=10^
故選:A.
【點睛】本題考查了正方形的性質(zhì),全等三角形的性質(zhì)與判定,勾股定理,熟練掌握全等三角形的性質(zhì)與
判定是解題的關鍵.
35.(2023?廣東深圳?深圳大學附屬中學??家荒#┫铝忻}中,真命題是()
A.在同圓或等圓中,相等的弦所對的圓周角相等
B.圓內(nèi)接四邊形的是菱形
C.順次連接一個四邊形的四邊中點得到的四邊形是平行四邊形
D.相似三角形一定不是全等三角形
【答案】C
【分析】利用圓周角定理、菱形的判定方法、平行四邊形的判定方法及相似三角形的性質(zhì)分別判斷后即可
確定正確的選項.
【詳解】解:A.在同圓或等圓中,相等的弦所對的圓周角相等或互補,故原命題錯誤,是假命題,不符合
題意;
B.圓內(nèi)接四邊形的不一定是菱形,故原命題錯誤,是假命題,不符合題意;
C.順次連接一個四邊形的四邊中點得到的四邊形是平行四邊形,正確,是真命題,符合題意;
D.相似三角形可能是全等三角形,故原命題錯誤,是假命題,不符合題意.
故選:C.
【點睛】本題考查了命題與定理:判斷事物的語句叫命題;正確的命題叫真命題,錯誤的命題叫假命題;
經(jīng)過推論論證得到的真命題稱為定理.
36.(2023?廣東深圳?深圳大學附屬中學??家荒#┠呈姓こ剃牅蕚湫藿ㄒ粭l長1200米的污水處理管道.在
修建完400米后,為了能趕在汛期前完成,采用新技術(shù),工作效率比原來提升了25%.結(jié)果比原計劃提前4
天完成任務.設原計劃每天修建管道x米,依題意列方程得()
12001200)1200-4001200-400)
A.-----------------------=4B.-------------------------------=4
xx(l+25%)xx(l+25%)
12001200-400)1200-4001200-400
C-----------------------=4D----------------=4
?xx(l+25%)?x(l+25%)x
【答案】B
【分析】設原計劃每天修建管道X米,則原計劃修建天數(shù)為幽天.實際前面400米,每天修建管道X米,需要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 養(yǎng)老院入住老人衣物洗滌與保養(yǎng)制度
- 企業(yè)食堂安全管理制度
- 會議代表權(quán)益保障制度
- 2026年中考化學實驗操作技能測試題
- 2026年旅游景點營銷與策劃實務試題
- 2026年機械工程基礎理論與應用題集
- 2026年物業(yè)垃圾清運外包協(xié)議(環(huán)?!ず弦?guī)版)
- 檢驗科化學試劑爆炸的應急處置制度及流程
- 古代日本高分突破課件
- 2024年甘孜縣招教考試備考題庫附答案解析(必刷)
- 對外話語體系構(gòu)建的敘事話語建構(gòu)課題申報書
- 馬年猜猜樂(馬的成語)打印版
- 精神障礙防治責任承諾書(3篇)
- 2025年擔保公司考試題庫(含答案)
- 2025年金融控股公司行業(yè)分析報告及未來發(fā)展趨勢預測
- 物業(yè)節(jié)前安全教育培訓
- 介入病人安全管理
- 人教版PEP五年級英語下冊單詞表與單詞字帖 手寫體可打印
- 戶口未婚改已婚委托書
- 國內(nèi)外影視基地調(diào)研報告-副本
- 家具制造廠家授權(quán)委托書
評論
0/150
提交評論