廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第1頁
廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第2頁
廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第3頁
廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第4頁
廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費(fèi)閱讀

付費(fèi)下載

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

廣西南寧市武鳴區(qū)2023-2024學(xué)年中考試題猜想數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,數(shù)軸上有A,B,C,D四個(gè)點(diǎn),其中表示互為倒數(shù)的點(diǎn)是()A.點(diǎn)A與點(diǎn)B B.點(diǎn)A與點(diǎn)D C.點(diǎn)B與點(diǎn)D D.點(diǎn)B與點(diǎn)C2.小明同學(xué)在學(xué)習(xí)了全等三角形的相關(guān)知識后發(fā)現(xiàn),只用兩把完全相同的長方形直尺就可以作出一個(gè)角的平分線.如圖:一把直尺壓住射線OB,另一把直尺壓住射線OA并且與第一把直尺交于點(diǎn)P,小明說:“射線OP就是∠BOA的角平分線.”他這樣做的依據(jù)是()A.角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在角的平分線上B.角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等C.三角形三條角平分線的交點(diǎn)到三條邊的距離相等D.以上均不正確3.學(xué)完分式運(yùn)算后,老師出了一道題“計(jì)算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的4.函數(shù)(為常數(shù))的圖像上有三點(diǎn),,,則函數(shù)值的大小關(guān)系是()A.y3<y1<y2 B.y3<y2<y1 C.y1<y2<y3 D.y2<y3<y15.如圖,在中,點(diǎn)D、E、F分別在邊、、上,且,.下列四種說法:①四邊形是平行四邊形;②如果,那么四邊形是矩形;③如果平分,那么四邊形是菱形;④如果且,那么四邊形是菱形.其中,正確的有()個(gè)A.1 B.2 C.3 D.46.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)(1,2)且與x軸交點(diǎn)的橫坐標(biāo)分別為x1,x2,其中﹣1<x1<0,1<x2<2,下列結(jié)論:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中結(jié)論正確的有()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)7.如圖所示的幾何體,它的左視圖是()A. B. C. D.8.如圖,在矩形ABCD中,AD=1,AB>1,AG平分∠BAD,分別過點(diǎn)B,C作BE⊥AG于點(diǎn)E,CF⊥AG于點(diǎn)F,則AE-GF的值為()A.1 B.2 C.32 D.9.如圖,在△ABC中,AB=AC=3,BC=4,AE平分∠BAC交BC于點(diǎn)E,點(diǎn)D為AB的中點(diǎn),連接DE,則△BDE的周長是()A.3 B.4 C.5 D.610.如圖,四邊形ABCD中,AC垂直平分BD,垂足為E,下列結(jié)論不一定成立的是()A.AB=AD B.AC平分∠BCDC.AB=BD D.△BEC≌△DEC二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.把兩個(gè)同樣大小的含45°角的三角尺按如圖所示的方式放置,其中一個(gè)三角尺的銳角頂點(diǎn)與另一個(gè)的直角頂點(diǎn)重合于點(diǎn)A,且另三個(gè)銳角頂點(diǎn)B,C,D在同一直線上.若AB=,則CD=_____.12.如圖,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中點(diǎn),點(diǎn)E在BA的延長線上,連接ED,若AE=2,則DE的長為_____.13.如果a+b=2,那么代數(shù)式(a﹣)÷的值是______.14.如圖所示:在平面直角坐標(biāo)系中,△OCB的外接圓與y軸交于A(0,),∠OCB=60°,∠COB=45°,則OC=.15.在平面直角坐標(biāo)系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標(biāo)軸,A點(diǎn)的坐標(biāo)為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點(diǎn),則a的取值范圍是_______.16.用換元法解方程時(shí),如果設(shè),那么原方程化成以為“元”的方程是________.三、解答題(共8題,共72分)17.(8分)“分組合作學(xué)習(xí)”已成為推動(dòng)課堂教學(xué)改革,打造自主高效課堂的重要措施.某中學(xué)從全校學(xué)生中隨機(jī)抽取部分學(xué)生對“分組合作學(xué)習(xí)”實(shí)施后的學(xué)習(xí)興趣情況進(jìn)行調(diào)查分析,統(tǒng)計(jì)圖如下:請結(jié)合圖中信息解答下列問題:求出隨機(jī)抽取調(diào)查的學(xué)生人數(shù);補(bǔ)全分組后學(xué)生學(xué)習(xí)興趣的條形統(tǒng)計(jì)圖;分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比和對應(yīng)扇形的圓心角.18.(8分)如圖,Rt△ABC中,∠ABC=90°,點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),CE∥DB,BE∥DC.(1)求證:四邊形DBEC是菱形;(2)若AD=3,DF=1,求四邊形DBEC面積.19.(8分)如圖,在四邊形ABCD中,AB=BC=1,CD=DA=1,且∠B=90°,求:∠BAD的度數(shù);四邊形ABCD的面積(結(jié)果保留根號).20.(8分)工人小王生產(chǎn)甲、乙兩種產(chǎn)品,生產(chǎn)產(chǎn)品件數(shù)與所用時(shí)間之間的關(guān)系如表:生產(chǎn)甲產(chǎn)品件數(shù)(件)生產(chǎn)乙產(chǎn)品件數(shù)(件)所用總時(shí)間(分鐘)10103503020850(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘?(2)小王每天工作8個(gè)小時(shí),每月工作25天.如果小王四月份生產(chǎn)甲種產(chǎn)品a件(a為正整數(shù)).①用含a的代數(shù)式表示小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù);②已知每生產(chǎn)一件甲產(chǎn)品可得1.50元,每生產(chǎn)一件乙種產(chǎn)品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.21.(8分)如圖,在正方形ABCD的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M,則圖中≌,可知,求得______.如圖,在矩形的外側(cè),作兩個(gè)等邊三角形ABE和ADF,連結(jié)ED與FC交于點(diǎn)M.求證:.若,求的度數(shù).22.(10分)如圖是小朋友蕩秋千的側(cè)面示意圖,靜止時(shí)秋千位于鉛垂線BD上,轉(zhuǎn)軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當(dāng)秋千擺動(dòng)到最高點(diǎn)A時(shí),測得點(diǎn)A到BD的距離AC=2m,點(diǎn)A到地面的距離AE=1.8m;當(dāng)他從A處擺動(dòng)到A′處時(shí),有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.23.(12分)如圖,在△ABC中,AB=AC,AE是角平分線,BM平分∠ABC交AE于點(diǎn)M,經(jīng)過B、M兩點(diǎn)的⊙O交BC于點(diǎn)G,交AB于點(diǎn)F,F(xiàn)B恰為⊙O的直徑.(1)判斷AE與⊙O的位置關(guān)系,并說明理由;(2)若BC=6,AC=4CE時(shí),求⊙O的半徑.24.我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

試題分析:主要考查倒數(shù)的定義和數(shù)軸,要求熟練掌握.需要注意的是:倒數(shù)的性質(zhì):負(fù)數(shù)的倒數(shù)還是負(fù)數(shù),正數(shù)的倒數(shù)是正數(shù),0沒有倒數(shù).倒數(shù)的定義:若兩個(gè)數(shù)的乘積是1,我們就稱這兩個(gè)數(shù)互為倒數(shù).根據(jù)倒數(shù)定義可知,-2的倒數(shù)是-,有數(shù)軸可知A對應(yīng)的數(shù)為-2,B對應(yīng)的數(shù)為-,所以A與B是互為倒數(shù).故選A.考點(diǎn):1.倒數(shù)的定義;2.?dāng)?shù)軸.2、A【解析】

過兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,因?yàn)槭莾砂淹耆嗤拈L方形直尺,可得CE=CF,再根據(jù)角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上可得OP平分∠AOB【詳解】如圖所示:過兩把直尺的交點(diǎn)C作CF⊥BO與點(diǎn)F,由題意得CE⊥AO,∵兩把完全相同的長方形直尺,∴CE=CF,∴OP平分∠AOB(角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上),故選A.【點(diǎn)睛】本題主要考查了基本作圖,關(guān)鍵是掌握角的內(nèi)部到角的兩邊的距離相等的點(diǎn)在這個(gè)角的平分線上這一判定定理.3、C【解析】試題解析:=====1.所以正確的應(yīng)是小芳.故選C.4、A【解析】試題解析:∵函數(shù)y=(a為常數(shù))中,-a1-1<0,∴函數(shù)圖象的兩個(gè)分支分別在二、四象限,在每一象限內(nèi)y隨x的增大而增大,∵>0,∴y3<0;∵-<-,∴0<y1<y1,∴y3<y1<y1.故選A.5、D【解析】

先由兩組對邊分別平行的四邊形為平行四邊形,根據(jù)DE∥CA,DF∥BA,得出AEDF為平行四邊形,得出①正確;當(dāng)∠BAC=90°,根據(jù)推出的平行四邊形AEDF,利用有一個(gè)角為直角的平行四邊形為矩形可得出②正確;若AD平分∠BAC,得到一對角相等,再根據(jù)兩直線平行內(nèi)錯(cuò)角相等又得到一對角相等,等量代換可得∠EAD=∠EDA,利用等角對等邊可得一組鄰邊相等,根據(jù)鄰邊相等的平行四邊形為菱形可得出③正確;由AB=AC,AD⊥BC,根據(jù)等腰三角形的三線合一可得AD平分∠BAC,同理可得四邊形AEDF是菱形,④正確,進(jìn)而得到正確說法的個(gè)數(shù).【詳解】解:∵DE∥CA,DF∥BA,∴四邊形AEDF是平行四邊形,選項(xiàng)①正確;若∠BAC=90°,∴平行四邊形AEDF為矩形,選項(xiàng)②正確;若AD平分∠BAC,∴∠EAD=∠FAD,又DE∥CA,∴∠EDA=∠FAD,∴∠EAD=∠EDA,∴AE=DE,∴平行四邊形AEDF為菱形,選項(xiàng)③正確;若AB=AC,AD⊥BC,∴AD平分∠BAC,同理可得平行四邊形AEDF為菱形,選項(xiàng)④正確,則其中正確的個(gè)數(shù)有4個(gè).故選D.【點(diǎn)睛】此題考查了平行四邊形的定義,菱形、矩形的判定,涉及的知識有:平行線的性質(zhì),角平分線的定義,以及等腰三角形的判定與性質(zhì),熟練掌握平行四邊形、矩形及菱形的判定與性質(zhì)是解本題的關(guān)鍵.6、D【解析】由拋物線的開口向下知a<0,與y軸的交點(diǎn)為在y軸的正半軸上,得c>0,對稱軸為x=<1,∵a<0,∴2a+b<0,而拋物線與x軸有兩個(gè)交點(diǎn),∴?4ac>0,當(dāng)x=2時(shí),y=4a+2b+c<0,當(dāng)x=1時(shí),a+b+c=2.∵>2,∴4ac?<8a,∴+8a>4ac,∵①a+b+c=2,則2a+2b+2c=4,②4a+2b+c<0,③a?b+c<0.由①,③得到2a+2c<2,由①,②得到2a?c<?4,4a?2c<?8,上面兩個(gè)相加得到6a<?6,∴a<?1.故選D.點(diǎn)睛:本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)中,a的符號由拋物線的開口方向決定;c的符號由拋物線與y軸交點(diǎn)的位置決定;b的符號由對稱軸位置與a的符號決定;拋物線與x軸的交點(diǎn)個(gè)數(shù)決定根的判別式的符號,注意二次函數(shù)圖象上特殊點(diǎn)的特點(diǎn).7、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個(gè)矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點(diǎn)睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.8、D【解析】

設(shè)AE=x,則AB=2x,由矩形的性質(zhì)得出∠BAD=∠D=90°,CD=AB,證明△ADG是等腰直角三角形,得出AG=2AD=2,同理得出CD=AB=2x,CG=CD-DG=2x-1,CG=2GF,得出GF,即可得出結(jié)果.【詳解】設(shè)AE=x,

∵四邊形ABCD是矩形,

∴∠BAD=∠D=90°,CD=AB,∵AG平分∠BAD,∴∠DAG=45°,∴△ADG是等腰直角三角形,∴DG=AD=1,∴AG=2AD=2,同理:BE=AE=x,CD=AB=2x,∴CG=CD-DG=2x-1,同理:CG=2GF,∴FG=22∴AE-GF=x-(x-22)=2故選D.【點(diǎn)睛】本題考查了矩形的性質(zhì)、等腰直角三角形的判定與性質(zhì),勾股定理;熟練掌握矩形的性質(zhì)和等腰直角三角形的性質(zhì),并能進(jìn)行推理計(jì)算是解決問題的關(guān)鍵.9、C【解析】

根據(jù)等腰三角形的性質(zhì)可得BE=BC=2,再根據(jù)三角形中位線定理可求得BD、DE長,根據(jù)三角形周長公式即可求得答案.【詳解】解:∵在△ABC中,AB=AC=3,AE平分∠BAC,∴BE=CE=BC=2,又∵D是AB中點(diǎn),∴BD=AB=,∴DE是△ABC的中位線,∴DE=AC=,∴△BDE的周長為BD+DE+BE=++2=5,故選C.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì)、三角形中位線定理,熟練掌握三角形中位線定理是解題的關(guān)鍵.10、C【解析】

解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,平分∠BCD,BE=DE.∴∠BCE=∠DCE.在Rt△BCE和Rt△DCE中,∵BE=DE,BC=DC,∴Rt△BCE≌Rt△DCE(HL).∴選項(xiàng)ABD都一定成立.故選C.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、【解析】

先利用等腰直角三角形的性質(zhì)求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出結(jié)論.【詳解】如圖,過點(diǎn)A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵兩個(gè)同樣大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根據(jù)勾股定理得,DF==∴CD=BF+DF-BC=1+-2=-1,故答案為-1.【點(diǎn)睛】此題主要考查了勾股定理,等腰直角三角形的性質(zhì),正確作出輔助線是解本題的關(guān)鍵.12、2【解析】

過點(diǎn)E作EF⊥BC于F,根據(jù)已知條件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根據(jù)勾股定理得到BF=EF=3,求得DF=BF?BD=,根據(jù)勾股定理即可得到結(jié)論.【詳解】解:過點(diǎn)E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=4,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=3,∵D是BC的中點(diǎn),∴BD=2,∴DF=BF?BD,∴DE===2.故答案為2.【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì),勾股定理,正確的作出輔助線構(gòu)造等腰直角三角形是解題的關(guān)鍵.13、2【解析】分析:根據(jù)分式的運(yùn)算法則即可求出答案.詳解:當(dāng)a+b=2時(shí),原式===a+b=2故答案為:2點(diǎn)睛:本題考查分式的運(yùn)算,解題的關(guān)鍵熟練運(yùn)用分式的運(yùn)算法則,本題屬于基礎(chǔ)題型.14、1+【解析】試題分析:連接AB,由圓周角定理知AB必過圓心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的長;過B作BD⊥OC,通過解直角三角形即可求得OD、BD、CD的長,進(jìn)而由OC=OD+CD求出OC的長.解:連接AB,則AB為⊙M的直徑.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.過B作BD⊥OC于D.Rt△OBD中,∠COB=45°,則OD=BD=OB=.Rt△BCD中,∠OCB=60°,則CD=BD=1.∴OC=CD+OD=1+.故答案為1+.點(diǎn)評:此題主要考查了圓周角定理及解直角三角形的綜合應(yīng)用能力,能夠正確的構(gòu)建出與已知和所求相關(guān)的直角三角形是解答此題的關(guān)鍵.15、【解析】

因?yàn)锳點(diǎn)的坐標(biāo)為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當(dāng)A點(diǎn)或C點(diǎn)在曲線上時(shí)a的值即可得到答案.【詳解】解:∵A點(diǎn)的坐標(biāo)為(a,a),∴C(a﹣1,a﹣1),當(dāng)C在雙曲線y=時(shí),則a﹣1=,解得a=+1;當(dāng)A在雙曲線y=時(shí),則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點(diǎn)睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關(guān)鍵在于根據(jù)題意找到關(guān)鍵點(diǎn),然后將關(guān)鍵點(diǎn)的坐標(biāo)代入反比例函數(shù)求得確定值即可.16、y-【解析】分析:根據(jù)換元法,可得答案.詳解:﹣=1時(shí),如果設(shè)=y,那么原方程化成以y為“元”的方程是y﹣=1.故答案為y﹣=1.點(diǎn)睛:本題考查了換元法解分式方程,把換元為y是解題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)200人;(2)補(bǔ)圖見解析;(3)分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比為30%;對應(yīng)扇形的圓心角為108°.【解析】試題分析:(1)用“極高”的人數(shù)所占的百分比,即可解答;

(2)求出“高”的人數(shù),即可補(bǔ)全統(tǒng)計(jì)圖;

(3)用“中”的人數(shù)調(diào)查的學(xué)生人數(shù),即可得到所占的百分比,所占的百分比即可求出對應(yīng)的扇形圓心角的度數(shù).試題解析:(人).學(xué)生學(xué)習(xí)興趣為“高”的人數(shù)為:(人).補(bǔ)全統(tǒng)計(jì)圖如下:分組后學(xué)生學(xué)習(xí)興趣為“中”的所占的百分比為:學(xué)生學(xué)習(xí)興趣為“中”對應(yīng)扇形的圓心角為:18、(1)見解析;(1)4【解析】

(1)根據(jù)平行四邊形的判定定理首先推知四邊形DBEC為平行四邊形,然后由直角三角形斜邊上的中線等于斜邊的一半得到其鄰邊相等:CD=BD,得證;(1)由三角形中位線定理和勾股定理求得AB邊的長度,然后根據(jù)菱形的性質(zhì)和三角形的面積公式進(jìn)行解答.【詳解】(1)證明:∵CE∥DB,BE∥DC,∴四邊形DBEC為平行四邊形.又∵Rt△ABC中,∠ABC=90°,點(diǎn)D是AC的中點(diǎn),∴CD=BD=AC,∴平行四邊形DBEC是菱形;(1)∵點(diǎn)D,F(xiàn)分別是AC,AB的中點(diǎn),AD=3,DF=1,∴DF是△ABC的中位線,AC=1AD=6,S△BCD=S△ABC∴BC=1DF=1.又∵∠ABC=90°,∴AB===4.∵平行四邊形DBEC是菱形,∴S四邊形DBEC=1S△BCD=S△ABC=AB?BC=×4×1=4.點(diǎn)睛:本題考查了菱形的判定與性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,三角形中位線定理.由點(diǎn)D是AC的中點(diǎn),得到CD=BD是解答(1)的關(guān)鍵,由菱形的性質(zhì)和三角形的面積公式得到S四邊形DBEC=S△ABC是解(1)的關(guān)鍵.19、(1);(2)【解析】

(1)連接AC,由勾股定理求出AC的長,再根據(jù)勾股定理的逆定理判斷出△ACD的形狀,進(jìn)而可求出∠BAD的度數(shù);

(2)由(1)可知△ABC和△ADC是Rt△,再根據(jù)S四邊形ABCD=S△ABC+S△ADC即可得出結(jié)論.【詳解】解:(1)連接AC,如圖所示:∵AB=BC=1,∠B=90°∴AC=,又∵AD=1,DC=,∴AD2+AC2=3CD2=()2=3即CD2=AD2+AC2∴∠DAC=90°∵AB=BC=1∴∠BAC=∠BCA=45°∴∠BAD=135°;(2)由(1)可知△ABC和△ADC是Rt△,∴S四邊形ABCD=S△ABC+S△ADC=1×1×+1××=.【點(diǎn)睛】考查的是勾股定理、勾股定理的逆定理及三角形的面積,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.20、(1)小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要15分鐘、20分鐘;(2)①600-;②a≤1.【解析】

(1)設(shè)生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要x分鐘、y分鐘,根據(jù)圖示可得:生產(chǎn)10件甲產(chǎn)品,10件乙產(chǎn)品用時(shí)350分鐘,生產(chǎn)30件甲產(chǎn)品,20件乙產(chǎn)品,用時(shí)850分鐘,列方程組求解;(2)①根據(jù)生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要的時(shí)間關(guān)系即可表示出結(jié)果;②根據(jù)“小王四月份的工資不少于1500元”即可列出不等式.【詳解】(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分鐘,生產(chǎn)一件乙種產(chǎn)品需y分鐘,由題意得:,解這個(gè)方程組得:,答:小王每生產(chǎn)一件甲種產(chǎn)品和每生產(chǎn)一件乙種產(chǎn)品分別需要15分鐘、20分鐘;(2)①∵生產(chǎn)一件甲種產(chǎn)品需15分鐘,生產(chǎn)一件乙種產(chǎn)品需20分鐘,∴一小時(shí)生產(chǎn)甲產(chǎn)品4件,生產(chǎn)乙產(chǎn)品3件,所以小王四月份生產(chǎn)乙種產(chǎn)品的件數(shù):3(25×8﹣)=600-;②依題意:1.5a+2.8(600-)≥1500,1680﹣0.6a≥1500,解得:a≤1.【點(diǎn)睛】本題考查了二元一次方程組的應(yīng)用、一元一次不等式的應(yīng)用,正確理解題意,找準(zhǔn)題中的等量關(guān)系列出方程組、不等關(guān)系列出不等式是解題的關(guān)鍵.21、閱讀發(fā)現(xiàn):90°;(1)證明見解析;(2)100°【解析】

閱讀發(fā)現(xiàn):只要證明,即可證明.拓展應(yīng)用:欲證明,只要證明≌即可.根據(jù)即可計(jì)算.【詳解】解:如圖中,四邊形ABCD是正方形,,,≌,,,,,,,故答案為為等邊三角形,,.為等邊三角形,,.四邊形ABCD為矩形,,..,,.在和中,,≌.;≌,,.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、正方形的性質(zhì)、矩形的性質(zhì)等知識,解題的關(guān)鍵是正確尋找全等三角形,利用全等三角形的尋找解決問題,屬于中考??碱}型.22、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】

(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點(diǎn)睛】本題考查了全等三角形的判定與性質(zhì)的應(yīng)用,作出輔助線,證明△ACB≌△BFA'是解決問題的關(guān)鍵.23、(1)AE與⊙O相切.理由見解析.(2)2.1【解析】

(1)連接OM,則OM=OB,利用平行的判定和性質(zhì)得到OM∥BC,∠AMO=∠AEB,再利用等腰三角形的性質(zhì)和切線的判定即可得證;(2)設(shè)⊙O的半徑為r,則AO=12﹣r,利用等腰三角形的性質(zhì)和解直角三角形的有關(guān)知識得到AB=12,易證△AOM∽△ABE,根據(jù)相似三角形的性質(zhì)即可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論