版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆甘肅省岷縣第二中學高二上數(shù)學期末復習檢測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某高中學校高二和高三年級共有學生人,為了解該校學生的視力情況,現(xiàn)采用分層抽樣的方法從三個年級中抽取一個容量為的樣本,其中高一年級抽取人,則高一年級學生人數(shù)為()A. B.C. D.2.函數(shù)在上單調遞增,則k的取值范圍是()A B.C. D.3.設雙曲線的左、右頂點分別為、,左、右焦點分別為、,以為直徑的圓與雙曲線左支的一個交點為若以為直徑的圓與直線相切,則的面積為()A. B.C. D.4.【山東省濰坊市二模】已知雙曲線的離心率為,其左焦點為,則雙曲線的方程為()A. B.C. D.5.若,在直線l上,則直線l一個方向向量為()A. B.C. D.6.若兩條平行線與之間的距離是2,則m的值為()A.或11 B.或10C.或12 D.或117.在三棱柱中,,,,則這個三棱柱的高()A1 B.C. D.8.南宋數(shù)學家楊輝在《詳解九章算術法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般的等差數(shù)列不同,前后兩項之差并不相等,但是逐項差數(shù)之差或者高次成等差數(shù)列.如數(shù)列1,3,6,10,前后兩項之差組成新數(shù)列2,3,4,新數(shù)列2,3,4為等差數(shù)列,這樣的數(shù)列稱為二階等差數(shù)列.現(xiàn)有二階等差數(shù)列,其前7項分別為2,3,5,8,12,17,23,則該數(shù)列的第31項為()A.336 B.467C.483 D.6019.的展開式中的系數(shù)為,則()A. B.C. D.10.在中,角所對的邊分別為,,,則外接圓的面積是()A. B.C. D.11.設兩個變量與之間具有線性相關關系,相關系數(shù)為,回歸方程為,那么必有()A.與符號相同 B.與符號相同C.與符號相反 D.與符號相反12.下列說法正確的是()A.“若,則,全為0”的否命題為“若,則,全不為0”B.“若方程有實根,則”的逆命題是假命題C.命題“,”的否定是“,”D.“”是“直線與直線平行”的充要條件二、填空題:本題共4小題,每小題5分,共20分。13.某學生到某工廠進行勞動實踐,利用打印技術制作模型.如圖,該模型為一個大圓柱中挖去一個小圓柱后剩余部分(兩個圓柱底面圓的圓心重合),大圓柱的軸截面是邊長為的正方形,小圓柱的側面積是大圓柱側面積的一半,打印所用原料的密度為,不考慮打印損耗,制作該模型所需原料的質量為________g.(?。?4.如圖,在長方體ABCD﹣A'B'C'D'中,點P,Q分別是棱BC,CD上的動點,BC=4,CD=3,CC'=2,直線CC'與平面PQC'所成的角為30°,則△PQC'的面積的最小值是__15.寫出一個同時具有性質①②的函數(shù)___________.(不是常值函數(shù)),①為偶函數(shù);②.16.若曲線在點處的切線斜率為,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在①,;②,;③,.這三個條件中任選一個,補充在下面問題中.問題:已知數(shù)列的前n項和為,,___________.(1)求數(shù)列的通項公式(2)已知,求數(shù)列的前n項和.18.(12分)已知直線過坐標原點,圓的方程為(1)當直線的斜率為時,求與圓相交所得的弦長;(2)設直線與圓交于兩點,,且為的中點,求直線的方程19.(12分)已知直線l:,圓C:.(1)當時,試判斷直線l與圓C的位置關系,并說明理由;(2)若直線l被圓C截得的弦長恰好為,求k的值.20.(12分)經(jīng)觀測,某公路段在某時段內的車流量(千輛/小時)與汽車的平均速度(千米/小時)之間有函數(shù)關系:(1)在該時段內,當汽車的平均速度為多少時車流量最大?最大車流量為多少?(精確到)(2)為保證在該時段內車流量至少為千輛/小時,則汽車的平均速度應控制在什么范圍內?21.(12分)已知拋物線過點,O為坐標原點(1)求焦點的坐標及其準線方程;(2)拋物線C在點A處的切線記為l,過點A作與切線l垂直的直線,與拋物線C的另一個交點記為B,求的面積22.(10分)如圖,在四棱錐中,底面ABCD,,,,(1)證明:;(2)當PB的長為何值時,直線AB與平面PCD所成角的正弦值為?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】先得到從高二和高三年級抽取人,再利用分層抽樣進行求解.【詳解】設高一年級學生人數(shù)為,因為從三個年級中抽取一個容量為的樣本,且高一年級抽取人,所以從高二和高三年級抽取人,則,解得,即高一年級學生人數(shù)為.故選:B2、A【解析】對函數(shù)求導,由于函數(shù)在給定區(qū)間上單調遞增,故恒成立.【詳解】由題意可得,,,,.故選:A3、C【解析】據(jù)三角形中位線可得;再由雙曲線的定義求出,進而求出的面積【詳解】雙曲線的方程為:,,設以為直徑的圓與直線相切與點,則,且,,∥.又為的中點,,又,,的面積為:.故選:C4、D【解析】分析:根據(jù)題設條件,列出方程,求出,,的值,即可求得雙曲線得標準方程詳解:∵雙曲線的離心率為,其左焦點為∴,∴∵∴∴雙曲線的標準方程為故選D.點睛:本題考查雙曲線的標準方程,雙曲線的簡單性質的應用,根據(jù)題設條件求出,,的值是解決本題的關鍵.5、C【解析】利用直線的方向向量的定義直接求解.【詳解】因為,在直線l上,所以直線l的一個方向向量為.故選:C.6、A【解析】利用平行線間距離公式進行求解即可.【詳解】因為兩條平行線與之間的距離是2,所以,或,故選:A7、D【解析】先求出平面ABC的法向量,然后將高看作為向量在平面ABC的法向量上的投影的絕對值,則答案可求.【詳解】設平面ABC的法向量為,而,,則,即有,不妨令,則,故,設三棱柱的高為h,則,故選:D.8、B【解析】先由遞推關系利用累加法求出通項公式,直接帶入即可求得.【詳解】根據(jù)題意,數(shù)列2,3,5,8,12,17,23……滿足,,所以該數(shù)列的第31項為.故選:B9、B【解析】根據(jù)二項式展開式的通項,先求得x的指數(shù)為1時r的值,再求得a的值.【詳解】由題意得:二項式展開式的通項為:,令,則,故選:B10、B【解析】利用余弦定理可得,然后利用正弦定理可得,即求.【詳解】因為,所以,由余弦定理得,,所以,設外接圓的半徑為,由正統(tǒng)定理得,,所以,所以外接圓的面積是.故選:B.11、A【解析】利用相關系數(shù)的性質,分析即得解【詳解】相關系數(shù)r為正,表示正相關,回歸直線方程上升,r為負,表示負相關,回歸直線方程下降,與r的符號相同故選:A12、D【解析】A選項,全為0的否定是不全為0;B選項,先寫出逆命題,再判斷出真假;C選項,命題“,”的否定是“,”,D選項,根據(jù)直線平行,列出方程和不等式,求出,進而判斷出充要條件.【詳解】“若,則,全為0”的否命題為“若,則,不全為0”,A錯誤;若方程有實根,則的逆命題是若,則方程有實根,由得:,其中,所以若,則方程有實根是真命題,故B錯誤;命題“,”的否定是“,”,C錯誤;直線與直線平行,需要滿足且,解得:,所以“”是“直線與直線平行”的充要條件,D正確;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、4500【解析】根據(jù)題意可知大圓柱底面圓的半徑,兩圓柱的高,設小圓柱的底面圓的半徑為,再根據(jù)小圓柱的側面積是大圓柱側面積的一半,求出小圓柱的底面圓的半徑,然后求出該模型的體積,從而可得出答案.【詳解】解:根據(jù)題意可知大圓柱的底面圓的半徑,兩圓柱的高,設小圓柱的底面圓的半徑為,則有,即,解得,所以該模型的體積為,所以制作該模型所需原料的質量為.故答案為:4500.14、8【解析】設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由體積法求得的關系,由直線CC’與平面C’PQ成的角為30°,得到xy≥8,再由VC﹣C′PQ=VC′﹣CPQ,能求出△PQC'的面積的最小值【詳解】解:設三棱錐C﹣C′PQ的高為h,CQ=x,CP=y(tǒng),由長方體性質知兩兩垂直,所以,,,,,所以,由得,所以,∵直線CC’與平面C’PQ成的角為30°,∴h=2,∴,,∴xy≥8,再由體積可知:VC﹣C′PQ=VC′﹣CPQ,得,S△C′PQ=xy,∴△PQC'的面積的最小值是8故答案為:815、(答案不唯一)【解析】利用導函數(shù)周期和奇偶性構造導函數(shù),再由導函數(shù)構造原函數(shù)列舉即可.【詳解】由知函數(shù)的周期為,則,同時滿足為偶函數(shù),所以滿足條件.故答案為:(答案不唯一).16、【解析】由導數(shù)的幾何意義求解即可【詳解】,,解得.故答案為:1三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)選①,利用化已知等式為,得是等差數(shù)列,公差,求出其通項公式后,再由求得通項公式,注意;選②,由可變形已知條件得是等差數(shù)列,從而求得通項公式;選③,已知式兩邊同除以,得出,以下同選①;(2)由錯位相減法求和【小問1詳解】選①,由得,,所以,即,所以是等差數(shù)列,公差,又,,,所以,,時,也適合所以;選②,由得,所以等差數(shù)列,公差為,又,所以;選③,由得,以下同選①,【小問2詳解】由(1),,,兩式相減得,所以18、(1)(2)或【解析】(1)、由題意可知直線的方程為,圓的圓心為,半徑為,求出圓心到直線的距離,根據(jù)勾股定理即可求出與圓相交所得的弦長;(2)、設,因為為的中點,所以,又因為,均在圓上,將,坐標代入圓方程,即可求出點坐標,即可求出直線的方程【小問1詳解】由題意:直線過坐標原點,且直線的斜率為直線的方程為,圓的方程為圓的方程可化為:圓的圓心為,半徑為圓的圓心到直線:的距離為,與圓相交所得的弦長為【小問2詳解】設,為的中點,又,均在圓上,或直線方程或19、(1)相離,理由見解析;(2)0或【解析】(1)求出圓心到直線的距離和半徑比較即可判斷;(2)求出圓心到直線的距離,利用弦長計算即可得出.【詳解】(1)圓C:的圓心為,半徑為2,當時,線l:,則圓心到直線的距離為,直線l與圓C相離;(2)圓心到直線的距離為,弦長為,則,解得或.20、(1)當(千米/小時)時,車流量最大,最大值約為千輛/小時;(2)汽車的平均速度應控制在這個范圍內(單位:千米/小時).【解析】(1)利用基本不等式可求得的最大值,及其對應的值,即可得出結論;(2)解不等式即可得解.【小問1詳解】解:,(千輛/小時),當且僅當時,即當(千米/小時)時,車流量最大,最大值約為千輛/小時.【小問2詳解】解:據(jù)題意有,即,即,解得,所以汽車的平均速度應控制在這個范圍內(單位:千米/小時).21、(1)焦點,準線方程;(2)12.【解析】(1)將點A坐標代入求出,寫出拋物線方程即可作答.(2)由(1)的結論求出切線l的斜率,進而求得直線AB方程,聯(lián)立直線AB與拋物線C的方程,求出弦AB長及點O到直線AB距離計算作答.【小問1詳解】依題意,,解得,則拋物線的方程為:,所以拋物線的焦點,準線方程為.【小問2詳解】顯然切線l的斜率存在,設切線l的方程為:,由消去x并整理得:,依題意得,解得,因直線,則直線AB的斜率為-1,方程為:,即,由消去x并整理得:,解得,因此有,而,則,而點到直線AB:的距離,則,所以的面積是12.22、(1)證明見解析(2)【解析】(1)由線面垂直的判斷定理證明平面PAB,再由線面垂直的性質定理即可證明;(2)以A為原點,AB,AC,AP分別為x軸,y軸,z軸,建立空
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 網(wǎng)絡安全公司安全顧問客戶反饋與解決方案實施考核表
- 道路新材料應用研究方案
- 食堂文化活動組織方案
- 公路施工用水管理方案
- 消防安全責任落實方案
- 人防工程施工組織設計方案
- 使用AI工具為線下活動生成全流程策劃方案
- 房屋聲學設計方案
- 地形地貌改造技術實施方案
- 婦幼保健院傳染病防控措施方案
- 文第19課《井岡翠竹》教學設計+2024-2025學年統(tǒng)編版語文七年級下冊
- 干部教育培訓行業(yè)跨境出海戰(zhàn)略研究報告
- 車庫使用協(xié)議合同
- 組件設計文檔-MBOM構型管理
- 《不在網(wǎng)絡中迷失》課件
- 山東省泰安市2024-2025學年高一物理下學期期末考試試題含解析
- 竹子產(chǎn)業(yè)發(fā)展策略
- 【可行性報告】2023年硫精砂項目可行性研究分析報告
- 2024-2025年上海中考英語真題及答案解析
- 2023年內蒙古呼倫貝爾市海拉爾區(qū)公開招聘公辦幼兒園控制數(shù)人員80名高頻筆試、歷年難易點考題(共500題含答案解析)模擬試卷
- 一年級數(shù)學質量分析強桂英
評論
0/150
提交評論